

Dynast: Complete splicing and labeling quantification from metabolic labeling scRNA-seq

Warning

Dynast is currently in beta-testing and is still under active development. Usage may change without warning.

Introduction:

	Getting started
	Installation

	Command-line structure

	Basic usage

Contents:

	Pipeline Usage
	Building the STAR index with ref

	Aligning FASTQs with align

	Calling consensus sequences with consensus

	Quantifying counts with count

	Estimating counts with estimate

	Control samples

	Technical Information
	Consensus procedure

	Count procedure

	Estimate procedure

	Read groups

	Statistical estimation

	API
	Subpackages

	Submodules

	Package Contents

	References

Tutorials:

	NASC-seq

	scSLAM-seq

	scNT-seq

	sci-fate

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Welcome to dynast!

Dynast is a command-line pipeline that preprocesses data from metabolic labeling scRNA-seq experiments and quantifies the following four mRNA species: unlabeled unspliced, unlabeled spliced, labeled unspliced and labeled spliced. In addition, dynast can perform statistical estimation of these species through expectation maximization (EM) and Bayesian inference. Please see Statistical estimation for more details on how the statistical estimation is performed.

[image: _images/punnet_square.svg]
Installation

The latest stable release of dynast is available on the Python Package Index (Pypi) and can be installed with pip:

pip install dynast-release

To install directly from the Git repository:

pip install git+https://github.com/aristoteleo/dynast-release

To install the latest development verson:

pip install git+https://github.com/aristoteleo/dynast-release@devel

Please note that not all features may be stable when using the development version.

Command-line structure

Dynast consists of four commands that represent four steps of the pipeline: ref, align, consensus, count, estimate. This modularity allows users to add additional preprocessing between steps as they see fit. For instance, a user may wish to run a custom step to mark and remove duplicates after the align step.

	Command

	Description

	ref

	Build a STAR index from a reference genome FASTA and GTF.

	align

	Align FASTQs into an alignment BAM.

	consensus

	Call consensus sequence for each sequenced mRNA molecule.

	count

	Quantify unlabeled and labeled RNA.

	estimate

	Estimate the fraction of labeled RNA via statistical estimation.

Basic usage

[image: _images/workflow.svg]Prerequisites:

	FASTQ files from a metabolic labeling scRNA-seq experiment

	[Optional] STAR genome index for the appropriate organism. Skip the first step if you already have this.

Build the STAR index

First, we must build a STAR index for the genome of the organism that was used in the experiment. For the purpose of this section, we will be using the mouse (Mus musculus) as an example. Download the genome (DNA) FASTA and gene annotations GTF. If you already have an appropriate STAR index, you do not need to re-generate it and may skip to the next step.

dynast ref -i STAR Mus_musculus.GRCm38.dna.primary_assembly.fa.gz Mus_musculus.GRCm38.102.gtf.gz

where STAR is the directory to which we will be saving the STAR index.

Align FASTQs

Next, we align the FASTQs to the genome.

dynast align -i STAR -o align -x TECHNOLOGY CDNA_FASTQ BARCODE_UMI_FASTQ

where align is the directory to which to save alignment files, and TECHNOLOGY is a scRNA-seq technology. A list of supported technologies can be found by running dynast --list. BARCODE_UMI_FASTQ is the FASTQ containing the barcode and UMI sequences, whereas the CDNA_FASTQ is the FASTQ containing the biological cDNA sequences.

[Optional] Consensus

Optionally, we can call consensus sequences for each sequenced mRNA molecule.

dynast consensus -g Mus_musculus.GRCm38.102.gtf.gz --barcode-tag CB --umi-tag UB -o consensus align/Aligned.sortedByCoord.out.bam

where consensus is the directory to which to save the consensus-called BAM. Once the above command finishes, the consensus directory will contain a new BAM file that can be used as input to the following step.

Quantify

Finally, we quantify the four RNA species of interest. Note that we re-use the gene annotations GTF.

dynast count -g Mus_musculus.GRCm38.102.gtf.gz --barcode-tag CB --umi-tag UB -o count --barcodes align/Solo.out/Gene/filtered/barcodes.tsv --conversion TC align/Aligned.sortedByCoord.out.bam

where count is the directory to which to save RNA quantifications. We provide a filtered barcode list align/Solo.out/Gene/filtered/barcodes.tsv, which was generated from the previous step, so that only these barcodes are processed during quantification. We specify the experimentally induced conversion with --conversion. In this example, our experiment introduces T-to-C conversions.

Once the above command finishes, the count directory will contain an adata.h5ad AnnData file containing all quantification results.

[Optional] Estimate

Optionally, we can estimate the unlabeled and labeled counts by statistically modelling the labeling dynamics (see Statistical estimation).

dynast estimate -o estimate count

where estimate is the directory to which to save RNA quantifications. We provide the directory that contains the quantification results (i.e. -o option of dynast count).

Once the above command finishes, the estimate directory will contain an adata.h5ad AnnData file containing all quantification and estimation results.

Pipeline Usage

This sections covers basic usage of dynast.

Building the STAR index with ref

Internally, dynast uses the STAR RNA-seq aligner to align reads to the genome [Dobin2013]. Therefore, we must construct a STAR index to use for alignment. The dynast ref command is a wrapper around the STAR’s --runMode genomeGenerate command, while also providing useful default parameters to limit memory usage, similar to Cell Ranger [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger]. Existing STAR indices can be used interchangeably with ones generated through dynast. A genome FASTA and gene annotation GTF are required to build the STAR index.

usage: dynast ref [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -i INDEX [-m MEMORY] fasta gtf

Build a STAR index from a reference

positional arguments:
 fasta Genomic FASTA file
 gtf Reference GTF file

optional arguments:
 -h, --help Show this help message and exit
 --tmp TMP Override default temporary directory
 --keep-tmp Do not delete the tmp directory
 --verbose Print debugging information
 -t THREADS Number of threads to use (default: 8)
 -m MEMORY Maximum memory used, in GB (default: 16)

required arguments:
 -i INDEX Path to the directory where the STAR index will be generated

Aligning FASTQs with align

The dynast align command is a wrapper around STARsolo [Dobin2013]. Dynast automatically formats the arguments to STARsolo to ensure the resulting alignment BAM contains information necessary for downstream processing.

Additionally, align sets a more lenient alignment score cutoff by setting --outFilterScoreMinOverLread 0.3 --outFilterMatchNminOverLread 0.3 because the reads are expected to have experimentally-induced conversions. The STARsolo defaults for both are 0.66. The --STAR-overrides argument can be used to pass arguments directly to STAR.

dynast align outputs a different set of BAM tags in the alignment BAM depending on the type of sequencing technology specified. These are described in the following subsections.

usage: dynast align [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -i INDEX [-o OUT] -x TECHNOLOGY
 [--strand {forward,reverse,unstranded}] [-w WHITELIST] [--overwrite]
 [--STAR-overrides ARGUMENTS]
 fastqs [fastqs ...]

Align FASTQs

positional arguments:
 fastqs FASTQ files. If `-x smartseq`, this is a single manifest CSV file where the first
 column contains cell IDs and the next two columns contain paths to FASTQs (the third
 column may contain a dash `-` for single-end reads).

optional arguments:
 -h, --help Show this help message and exit
 --tmp TMP Override default temporary directory
 --keep-tmp Do not delete the tmp directory
 --verbose Print debugging information
 -t THREADS Number of threads to use (default: 8)
 --strand {forward,reverse,unstranded}
 Read strandedness. (default: `forward`)
 -w WHITELIST Path to file of whitelisted barcodes to correct to. If not provided, all barcodes are
 used.
 --overwrite Overwrite existing alignment files
 --STAR-overrides ARGUMENTS
 Arguments to pass directly to STAR.

required arguments:
 -i INDEX Path to the directory where the STAR index is located
 -o OUT Path to output directory (default: current directory)
 -x TECHNOLOGY Single-cell technology used. `dynast --list` to view all supported technologies

UMI-based technologies

For UMI-based technologies (such as Drop-seq, 10X Chromium, scNT-seq), the following BAM tags are written to the alignment BAM.

	MD

	HI, AS for alignment index and score

	CR, CB for raw and corrected barcodes

	UR, UB for raw and corrected UMIs

Plate-based technologies

For plate-based technologies (such as Smart-Seq), the following BAM tags are written to the alignment BAM. See

	MD

	HI, AS for alignment index and score

	RG indicating the sample name

Calling consensus sequences with consensus

dynast consensus parses the alignment BAM to generate consensus sequences for each sequenced mRNA molecule (see Consensus procedure).

usage: dynast consensus [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -g GTF [-o OUT] [--umi-tag TAG]
 [--barcode-tag TAG] [--gene-tag TAG] [--strand {forward,reverse,unstranded}]
 [--quality QUALITY] [--barcodes TXT] [--add-RS-RI]
 bam

Generate consensus sequences

positional arguments:
 bam Alignment BAM file that contains the appropriate UMI and barcode tags, specifiable with
 `--umi-tag`, and `--barcode-tag`.

optional arguments:
 -h, --help Show this help message and exit
 --tmp TMP Override default temporary directory
 --keep-tmp Do not delete the tmp directory
 --verbose Print debugging information
 -t THREADS Number of threads to use (default: 8)
 -o OUT Path to output directory (default: current directory)
 --umi-tag TAG BAM tag to use as unique molecular identifiers (UMI). If not provided, all reads are assumed
 to be unique. (default: None)
 --barcode-tag TAG BAM tag to use as cell barcodes. If not provided, all reads are assumed to be from a single
 cell. (default: None)
 --gene-tag TAG BAM tag to use as gene assignments (default: GX)
 --strand {forward,reverse,unstranded}
 Read strandedness. (default: `forward`)
 --quality QUALITY Base quality threshold. When generating a consensus nucleotide at a certain position, the base
 with smallest error probability below this quality threshold is chosen. If no base meets this
 criteria, the reference base is chosen. (default: 27)
 --barcodes TXT Textfile containing filtered cell barcodes. Only these barcodes will be processed.
 --add-RS-RI Add custom RS and RI tags to the output BAM, each of which contain a semi-colon delimited list
 of read names (RS) and alignment indices (RI) of the reads and alignments from which the
 consensus is derived. This option is useful for debugging.

required arguments:
 -g GTF Path to GTF file used to generate the STAR index

The resulting BAM will contain a collection of consensus alignments and a subset of original alignments (for those alignments for which a consensus could not be determined). The latter are identical to those in the original BAM, while the names of the former will be seemingly random sequences of letters and numbers (in reality, these are SHA256 checksums of the grouped read names). They will also contain the following modified BAM tags

	AS is now the sum of the alignment scores of the reads

	HI, the alignment index, is always 1

and the follwing additional BAM tags.

	RN indicating how many reads were used to generate the consensus

	RS, RI each containing a semicolon-delimited list of read names and their corresponding alignment indices (HI tag in the original BAM) that were used to generate the consensus (only added if --add-RS-RI is provided)

Quantifying counts with count

dynast count parses the alignment BAM and quantifies the four RNA species (unlabeled unspliced, unlabeled spliced, labeled unspliced, labeled spliced) and outputs the results as a ready-to-use AnnData [https://anndata.readthedocs.io/en/latest/] H5AD file. In order to properly quantify the above four species, the alignment BAM must contain specific BAM tags, depending on what sequencing technology was used. If dynast align was used to generate the alignment BAM, dynast automatically configures the appropriate BAM tags to be written.

usage: dynast count [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -g GTF --conversion CONVERSION [-o OUT]
 [--umi-tag TAG] [--barcode-tag TAG] [--gene-tag TAG] [--strand {forward,reverse,unstranded}]
 [--quality QUALITY] [--snp-threshold THRESHOLD] [--snp-min-coverage THRESHOLD] [--snp-csv CSV]
 [--barcodes TXT] [--no-splicing | --exon-overlap {lenient,strict}] [--control]
 [--dedup-mode {auto,conversion,exon}] [--overwrite]
 bam

Quantify unlabeled and labeled RNA

positional arguments:
 bam Alignment BAM file that contains the appropriate UMI and barcode tags, specifiable with
 `--umi-tag`, and `--barcode-tag`.

optional arguments:
 -h, --help Show this help message and exit
 --tmp TMP Override default temporary directory
 --keep-tmp Do not delete the tmp directory
 --verbose Print debugging information
 -t THREADS Number of threads to use (default: 8)
 -o OUT Path to output directory (default: current directory)
 --umi-tag TAG BAM tag to use as unique molecular identifiers (UMI). If not provided, all reads are assumed
 to be unique. (default: None)
 --barcode-tag TAG BAM tag to use as cell barcodes. If not provided, all reads are assumed to be from a single
 cell. (default: None)
 --gene-tag TAG BAM tag to use as gene assignments (default: GX)
 --strand {forward,reverse,unstranded}
 Read strandedness. (default: `forward`)
 --quality QUALITY Base quality threshold. Only bases with PHRED quality greater than this value will be
 considered when counting conversions. (default: 27)
 --snp-threshold THRESHOLD
 Conversions with (# conversions) / (# reads) greater than this threshold will be considered a
 SNP and ignored. (default: no SNP detection)
 --snp-min-coverage THRESHOLD
 For a conversion to be considered as a SNP, there must be at least this many reads mapping to
 that region. (default: 1)
 --snp-csv CSV CSV file of two columns: contig (i.e. chromosome) and genome position of known SNPs
 --barcodes TXT Textfile containing filtered cell barcodes. Only these barcodes will be processed.
 --no-splicing, --transcriptome-only
 Do not assign reads a splicing status (spliced, unspliced, ambiguous) and ignore reads that
 are not assigned to the transcriptome.
 --exon-overlap {lenient,strict}
 Algorithm to use to detect spliced reads (that overlap exons). May be `strict`, which assigns
 reads as spliced if it only overlaps exons, or `lenient`, which assigns reads as spliced if it
 does not overlap with any introns of at least one transcript. (default: lenient)
 --control Indicate this is a control sample, which is used to detect SNPs.
 --dedup-mode {auto,conversion,exon}
 Deduplication mode for UMI-based technologies (required `--umi-tag`). Available choices are:
 `auto`, `conversion`, `exon`. When `conversion` is used, reads that have at least one of the
 provided conversions is prioritized. When `exon` is used, exonic reads are prioritized. By
 default (`auto`), the BAM is inspected to select the appropriate mode.
 --overwrite Overwrite existing files.

required arguments:
 -g GTF Path to GTF file used to generate the STAR index
 --conversion CONVERSION
 The type of conversion(s) introduced at a single timepoint. Multiple conversions can be
 specified with a comma-delimited list. For example, T>C and A>G is TC,AG. This option can be
 specified multiple times (i.e. dual labeling), for each labeling timepoint.

Basic arguments

The --barcode-tag and --umi-tag arguments are used to specify what BAM tags should be used to differentiate cells (barcode) and RNA molecules (UMI). If the former is not specified, all BAM alignments are assumed to be from a single cell, and if the latter is not specified, all aligned reads are assumed to be unique (i.e. no read deduplication is performed). If align was used to generate the alignment BAM, then --barcode-tag CB --umi-tag UB is recommended for UMI-based technologies (see UMI-based technologies), and --barcode-tag RG is recommended for Plate-based technologies (see Plate-based technologies).

The --strand argument can be used to specify the read strand of the sequencing technology. Usually, the default (forward) is appropriate, but this argument may be of use for other technologies.

The --conversion argument is used to specify the type of conversion that is experimentally introduced as a two-character string. For instance, a T>C conversion is represented as TC, which is the default. Multiple conversions can be specified as a comma-delimited list, and --conversion may be specified multiple times to indicate multiple-indexing experiments. For example, for an experiment that introduced T>C mutations at timepoint 1 and A>G and C>G mutations at timepoint 2, the appropriate options would be --conversion TC --conversion AG,CG.

Detecting and filtering SNPs

dynast count has the ability to detect single-nucleotide polymorphisms (SNPs) by calculating the fraction of reads with a mutation at a certain genomic position. --snp-threshold can be used to specify the proportion threshold greater than which a SNP will be called at that position. All conversions/mutations at the genomic positions with SNPs detected in this manner will be filtered out from further processing. In addition, a CSV file containing known SNP positions can be provided with the --snp-csv argument. This argument accepts a CSV file containing two columns: contig (i.e. chromosome) and genomic position of known SNPs.

Read deduplication modes

The --dedup-mode option is used to select how duplicate reads should be deduplicated for UMI-based technologies (i.e. --umi-tag is provided). Two different modes are supported: conversion and exon. The former prioritizes reads that have at least one conversions provided by --conversion. The latter prioritizes exonic reads. See quant for a more technical description of how deduplication is performed. Additionally, see Consensus procedure to get an idea of why selecting the correct option may be important.

By default, the --dedup-mode is set to auto, which sets the deduplication mode to exon if the input BAM is detected to be a consensus-called BAM (a BAM generated with dynast consensus). Otherwise, it is set to conversion. This option has no effect for non-UMI technologies.

Estimating counts with estimate

The fraction of labeled RNA is estimated with the dynast estimate command. Whereas dynast count produces naive UMI count matrices, dynast estimate statistically models labeling dynamics to estimate the true fraction of labeled RNA (and then in turn uses this fraction to split the total UMI counts into unlabeled and labeled RNA). See Statistical estimation of a technical overview of this process. In this section, we will simply be describing the command-line usage of this command.

usage: dynast estimate [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS]
 [--reads {total,transcriptome,spliced,unspliced}] [-o OUT] [--groups CSV]
 [--ignore-groups-for-pi] [--genes TXT] [--cell-threshold COUNT] [--cell-gene-threshold COUNT]
 [--downsample NUM] [--downsample-mode MODE] [--control] [--p-e P_E]
 count_dirs [count_dirs ...]

Estimate fraction of labeled RNA

positional arguments:
 count_dirs Path to directory that contains `dynast count` output. When multiple are provided, the
 barcodes in each of the count directories are suffixed with `-i` where i is a 0-indexed
 integer.

optional arguments:
 -h, --help Show this help message and exit
 --tmp TMP Override default temporary directory
 --keep-tmp Do not delete the tmp directory
 --verbose Print debugging information
 -t THREADS Number of threads to use (default: 8)
 --reads {total,transcriptome,spliced,unspliced}
 Read groups to perform estimation on. This option can be used multiple times to estimate
 multiple groups. (default: all possible reads groups)
 -o OUT Path to output directory (default: current directory)
 --groups CSV CSV containing cell (barcode) groups, where the first column is the barcode and the second is
 the group name the cell belongs to. Cells will be combined per group for estimation of
 parameters specified by `--groups-for`.
 --ignore-groups-for-pi
 Ignore cell groupings when estimating the fraction of labeled RNA. This option only has an
 effect when `--groups` is also specified.
 --genes TXT Textfile containing list of genes to use. All other genes will be treated as if they do not
 exist.
 --cell-threshold COUNT
 A cell must have at least this many reads for correction. (default: 1000)
 --cell-gene-threshold COUNT
 A cell-gene pair must have at least this many reads for correction. (default: 16)
 --downsample NUM Downsample the number of reads (UMIs). If a decimal between 0 and 1 is given, then the number
 is interpreted as the proportion of remaining reads. If an integer is given, the number is
 interpreted as the absolute number of remaining reads.
 --downsample-mode MODE
 Downsampling mode. Can be one of: `uniform`, `cell`, `group`. If `uniform`, all reads (UMIs)
 are downsampled uniformly at random. If `cell`, only cells that have more reads than the
 argument to `--downsample` are downsampled to exactly that number. If `group`, identical to
 `cell` but per group specified by `--groups`.
 --control Indicate this is a control sample, only the background mutation rate will be estimated.
 --p-e P_E Textfile containing a single number, indicating the estimated background mutation rate

Estimation thresholds

The --cell-threshold and --cell-gene-threshold arguments control the minimum number of reads that a cell and cell-gene combination must have for accurate estimation. By default, these are 1000 and 16 respectively. Any cells with reads less than the former are excluded from estimation, and the same goes for any genes within a cell that has less reads than the latter. If --groups is also provided, then these thresholds apply to each cell group instead of each cell individually. Internally, --cell-threshold is used to filter cells before estimating the average conversion rate in labeled RNA (see Induced rate estimation (p_c)), and --cell-gene-threshold is used to filter cell-gene combinations before estimating the fraction of new RNA (see Bayesian inference (\pi_g)).

Estimation on a subset of RNA species

The --reads argument controls which RNA species to run the estimation procedure on. By default, all possible RNA species, minus ambiguous reads, are used. This argument can take on the following values: total, transcriptome, spliced, unspliced (see Read groups). The value of this argument specifies which group of unlabeled/labeled RNA counts will be estimated. For instance, --reads spliced will run statistical estimation on unlabeled/labeled spliced reads. This option may be provided multiple times to run estimation on multiple groups. The procedure involves estimating the conversion rate of unlabeled and labeled RNA, and modeling the fraction of new RNA as a binomial mixture model (see Statistical estimation).

Grouping cells

Sometimes, grouping read counts across cells may provide better estimation results, especially in the case of droplet-based methods, which result in fewer reads per cell and gene compared to plate-based methods. The --groups argument can be used to provide a CSV of two columns: the first containing the cell barcodes and the second containing group names that each cell belongs to. Estimation is then performed on a per-group basis by combining the read counts across all cells in each group. This strategy may be applied across different samples, simply by specifying multiple input directories. In this case, the number of group CSVs specified with --groups must match the number of input directories. For example, when providing two input directories ./input1 and ./input2, with the intention of grouping cells across these two samples, two group CSVs, groups1.csv and groups2.csv must be provided where the former are groups for barcodes in the first sample, and the latter are groups for barcodes in the second sample. The group names may be shared across samples. The output AnnData will still contain reads per cell.

Cell groupings provided this way may be ignored for estimation of the fraction of labeled RNA (see Bayesian inference (\pi_g)) by providing the --ignore-groups-for-pi flag. This flag may be used only in conjunction with --groups, and when it is provided, estimation of the fraction of labeled RNA is performed per cell, while estimation of background and induced mutation rates are still done per group.

Downsampling

Downsampling UMIs uniformly, per cell, or per cell group may be useful to significantly reduce runtime while troubleshooting pipeline parameters (or just to quickly get some preliminary results). Dynast can perform downsampling when the --downsample argument is used. The value of this argument may either be an integer indicating the number of UMIs to retain or a proportion between 0 and 1 indicating the proportion of UMIs to retain. Additionally, the downsampling mode may be specified with the --downsample-mode argument, which takes one of the following three parameters: uniform, cell, group. uniform is the default that downsamples UMIs uniformly at random. When cell is provided, the value of --downsample may only be an integer specifying the threshold to downsample cells to. Only cells with UMI counts greater than this value will be downsampled to exactly this value. group works the same way, but for cell groups and may be used only in conjunction with --groups.

Control samples

Control samples may be used to find common SNPs and directly estimate the conversion rate of unlabeled RNA (see Background estimation (p_e)). Normally, the latter is estimating using the reads directly. However, it is possible to use a control sample (prepared in absence of the experimental introduction of conversions) to calculate this value directly. In addition, SNPs can be called in the control sample, and these called SNPs can be used when running the test sample(s) (see Detecting and filtering SNPs for SNP arguments). Note that SNP calling is done with dynast count.

A typical workflow for a control sample is the following.

dynast count --control --snp-threshold 0.5 [...] -o control_count --conversion TC -g GTF.gtf CONTROL.bam
dynast estimate --control -o control_estimate control_count

Where [...] indicates the usual options that would be used for dynast count if this were not control samples. See Basic arguments for these options.

The dynast count command detects SNPs from the control sample and outputs them to the file snps.csv in the output directory control_count. The dynast estimate calculates the background conversion rate of unlabeled RNA to the file p_e.csv in the output directory control_estimate. These files can then be used as input when running the test sample.

dynast count --snp-csv control_count/snps.csv -o test_count [...] INPUT.bam
dynast estimate --p-e control_estimate/p_e.csv -o test_estimate test_count

The above set of commands runs quantification and estimation on the test sample using the SNPs detected from the control sample (control_count/snps.csv) and the background conversion rate estimated from the control sample (control_estimate/p_e.csv).

Technical Information

This section details technical information of the quantification and statistical estimation procedures of the dynast consensus, dynast count and dynast estimate commands. Descriptions of dynast ref and dynast align commands are in Pipeline Usage.

[image: _images/steps.svg]
Consensus procedure

dynast consensus procedure generates consensus sequences for each mRNA molecule that was present in the sample. It relies on sequencing the same mRNA molecule (often distinguished using UMIs for UMI-based technologies, or start and end alignment positions for non-UMI technologies) multiple times, to obtain a more confident read sequence.

Why don’t we just perform UMI-deduplication (by just selecting a single read among the reads that share the same UMI) and call it a day? Though it seems counterintuitive, reads sharing the same UMI may originate from different regions of the same mRNA, as [Qiu2020] (scNT-seq) observed in Extended Data Fig.1b [https://www.nature.com/articles/s41592-020-0935-4/figures/7].

[image: _images/scnt_umi.png]
Therefore, simply selecting one read and discarding the rest will cause a bias toward unlabeled reads because the selected read may happen to have no conversions, while all the other (discarded) reads do. Therefore, we found it necessary to implement a consensus-calling procedure, which works in the following steps. Here, we assume cell barcodes are available (--barcode-tag is provided), but the same procedure can be performed in the absence of cell barcodes by assuming all reads were from a single cell. Additionally, we will use the term read and alignment interchangeably because only a single alignment (see the note below) from each read will be considered.

	Alignments in the BAM are grouped into UMI groups. In the case of UMI-based technologies (--umi-tag is provided), a UMI group is defined as the set of alignments that share the same cell barcode, UMI, and gene. For alignments with the --gene-tag tag, assigning these into a UMI group is trivial. For alignments without this tag, it is assigned to the gene whose gene body fully contains the alignment. If multiple genes are applicable, the alignment is not assigned a UMI group and output to the resulting BAM as-is. For non-UMI-based technologies, the start and end positions of the alignment are used as a pseudo-UMI.

	For each UMI group, the consensus base is taken for every genomic location that is covered by at least one alignment in the group. The consensus base is defined as the base with the highest sum of quality scores of that base among all alignments in the group. Loosely, this is proportional to the conditional probability of each base being a sequencing error. If the consensus base score does not exceed the score specified with --quality, then the reference base is taken instead. Once this is done for every covered genomic location, the consensus alignment is output to the BAM, and the UMI group is discarded (i.e. not written to the BAM).

Note

Only primary, not-duplicate, mapped BAM entries are considered (equivalent to the 0x4, 0x100, 0x400 BAM flags being unset). For paired reads, only properly paired alignments (0x2 BAM flag being set) are considered. Additionally, if --barcode-tag or --umi-tag are provided, only BAM entries that have these tags are considered. Any alignments that do not satisfy all of these conditions are not written to the output BAM.

Count procedure

dynast count procedure consists of three steps:

	parse

	snp

	quant

parse

	All gene and transcript information are parsed from the gene annotation GTF (-g) and saved as Python pickles genes.pkl.gz and transcripts.pkl.gz, respectively.

	All aligned reads are parsed from the input BAM and output to conversions.csv and alignments.csv. The former contains a line for every conversion, and the latter contains a line for every alignment. Note that no conversion filtering (--quality) is performed in this step. Two .idx files are also output, corresponding to each of these CSVs, which are used downstream for fast parsing. Splicing types are also assigned in this step if --no-splicing was not provided.

Note

Only primary, not-duplicate, mapped BAM entries are considered (equivalent to the 0x4, 0x100, 0x400 BAM flags being unset). For paired reads, only properly paired alignments (0x2 BAM flag being set) are considered. Additionally, if --barcode-tag or --umi-tag are provided, only BAM entries that have these tags are considered.

snp

This step is skipped if --snp-threshold is not specified.

	Read coverage of the genome is computed by parsing all aligned reads from the input BAM and output to coverage.csv.

	SNPs are detected by calculating, for every genomic position, the fraction of reads with a conversion at that position over its coverage. If this fraction is greater than --snp-threshold, then the genomic position and the specific conversion is written to the output file snps.csv. Any conversion with PHRED quality less than or equal to --quality is not counted as a conversion. Additionally, --snp-min-coverage can be used to specify the minimum coverage any detected SNP must have. Any sites that have less than this coverage are ignored (and therefore not labeled as SNPs).

quant

	For every read, the numbers of each conversion (A>C, A>G, A>T, C>A, etc.) and nucleotide content (how many of A, C, G, T there are in the region that the read aligned to) are counted. Any SNPs provided with --snp-csv or detected from the snp step are not counted. If both are present, the union is used. Additionally, Any conversion with PHRED quality less than or equal to --quality is not counted as a conversion.

	For UMI-based technologies, reads are deduplicated by the following order of priority: 1) reads that have at least one conversion specified with --conversion, 2) read that aligns to the transcriptome (i.e. exon-only), 3) read that has the highest alignment score, and 4) read with the most conversions specified with --conversion. If multiple conversions are provided, the sum is used. Reads are considered duplicates if they share the same barcode, UMI, and gene assignment. For plate-based technologies, read deduplication should have been performed in the alignment step (in the case of STAR, with the --soloUMIdedup Exact), but in the case of multimapping reads, it becomes a bit more tricky. If a read is multimapping such that some alignments map to the transcriptome while some do not, the transcriptome alignment is taken (there can not be multiple transcriptome alignments, as this is a constraint within STAR). If none align to the transcriptome and the alignments are assigned to multiple genes, the read is dropped, as it is impossible to assign the read with confidence. If none align to the transcriptome and the alignments are assigned multiple velocity types, the velocity type is manually set to ambiguous and the first alignment is kept. If none of these cases are true, the first alignment is kept. The final deduplicated/de-multimapped counts are output to counts_{conversions}.csv, where {conversions} is an underscore-delimited list of all conversions provided with --conversion.

Note

All bases in this file are relative to the forward genomic strand. For example, a read mapped to a gene on the reverse genomic strand should be complemented to get the actual bases.

Output Anndata

All results are compiled into a single AnnData H5AD file. The AnnData object contains the following:

	The transcriptome read counts in .X. Here, transcriptome reads are the mRNA read counts that are usually output from conventional scRNA-seq quantification pipelines. In technical terms, these are reads that contain the BAM tag provided with the --gene-tag (default is GX).

	Unlabeled and labeled transcriptome read counts in .layers['X_n_{conversion}'] and .layers['X_l_{conversion}'].

The following layers are also present if --no-splicing or --transcriptome-only was NOT specified.

	The total read counts in .layers['total'].

	Unlabeled and labeled total read counts in .layers['unlabeled_{conversion}'] and .layers['labeled_{conversion}'].

	Spliced, unspliced and ambiguous read counts in .layers['spliced'], .layers['unspliced'] and .layers['ambiguous'].

	Unspliced unlabeled, unspliced labeled, spliced unlabeled, spliced labeled read counts in .layers['un_{conversion}'], .layers['ul_{conversion}'], .layers['sn_{conversion}'] and .layers['sl_{conversion}'] respectively.

The following equalities always hold for the resulting Anndata.

	.layers['total'] == .layers['spliced'] + .layers['unspliced'] + .layers['ambiguous']

The following additional equalities always hold for the resulting Anndata in the case of single labeling (--conversion was specified once).

	.X == .layers['X_n_{conversion}'] + .layers['X_l_{conversion}']

	.layers['spliced'] == .layers['sn_{conversion}'] + .layers['sl_{conversion}']

	.layers['unspliced'] == .layers['un_{conversion}'] + .layers['ul_{conversion}']

Tip

To quantify splicing data from conventional scRNA-seq experiments (experiments without metabolic labeling), we recommend using the kallisto | bustools [https://www.kallistobus.tools/] pipeline.

Estimate procedure

dynast estimate procedure consists of two steps:

	aggregate

	estimate

aggregate

For each cell and gene and for each conversion provided with --conversion, the conversion counts are aggregated into a CSV file such that each row contains the following columns: cell barcode, gene, conversion count, nucleotide content of the original base (i.e. if the conversion is T>C, this would be T), and the number of reads that have this particular barcode-gene-conversion-content combination. This procedure is done for all read groups that exist (see Read groups).

estimate

	The background conversion rate \(p_e\) is estimated, if --p-e was not provided (see Background estimation (p_e)). If --p-e was provided, this value is used and estimation is skipped. \(p_e\).

	The induced conversion rate \(p_c\) is estimated using an expectation maximization (EM) approach, for each conversion provided with --conversion (see Induced rate estimation (p_c)). \(p_c\) where {conversion} is an underscore-delimited list of each conversion (because multiple conversions can be introduced in a single timepoint). This step is skipped for control samples with --control.

	Finally, the fraction of labeled RNA per cell \(\pi_c\) and per cell-gene \(\pi_g\) are estimated. The resulting fractions are written to CSV files named pi_c_xxx.csv and pi_xxx.csv, where the former contains estimations per cell and the latter contains estimations per cell-gene.

Output Anndata

All results are compiled into a single AnnData H5AD file. The AnnData object contains the following:

	The transcriptome read counts in .X. Here, transcriptome reads are the mRNA read counts that are usually output from conventional scRNA-seq quantification pipelines. In technical terms, these are reads that contain the BAM tag provided with the --gene-tag (default is GX).

	Unlabeled and labeled transcriptome read counts in .layers['X_n_{conversion}'] and .layers['X_l_{conversion}']. If --reads transcriptome was specified, the estimated counts are in .layers['X_n_{conversion}_est'] and .layers['X_l_{conversion}_est']. {conversion} is an underscore-delimited list of each conversion provided with --conversion when running dynast count.

	Per cell estimated parameters in corresponding columns of .obs. These include the estimated \(p_e\) in .obs['p_e'], \(p_c\) in .obs['p_c_{conversion}'], and per cell estimated fractions of labeled RNA in .obs['pi_c_{group}_{conversion}']. There is one column for each possible read group. For instance, if transcriptome and spliced read groups are available, two columns with the names pi_c_transcriptome_{conversion} and pi_c_spliced_{conversion} are added.

The following layers are also present if --no-splicing or --transcriptome-only was NOT specified when running dynast count.

	The total read counts in .layers['total'].

	Unlabeled and labeled total read counts in .layers['unlabeled_{conversion}'] and .layers['labeled_{conversion}']. If --reads total is specified, the estimated counts are in .layers['unlabeled_{conversion}_est'] and .layers['labeled_{conversion}_est'].

	Spliced, unspliced and ambiguous read counts in .layers['spliced'], .layers['unspliced'] and .layers['ambiguous'].

	Unspliced unlabeled, unspliced labeled, spliced unlabeled, spliced labeled read counts in .layers['un_{conversion}'], .layers['ul_{conversion}'], .layers['sn_{conversion}'] and .layers['sl_{conversion}'] respectively. If --reads spliced and/or --reads unspliced was specified, layers with estimated counts are added. These layers are suffixed with _est, analogous to total counts above.

In addition to the equalities listed in the quant section, the following inequalities always hold for the resulting Anndata.

	.X >= .layers['X_n_{conversion}_est'] + .layers['X_l_{conversion}_est']

	.layers['spliced'] >= .layers['sn_{conversion}_est'] + .layers['sl_{conversion}_est']

	.layers['unspliced'] >= .layers['un_{conversion}_est'] + .layers['ul_{conversion}_est']

Tip

To quantify splicing data from conventional scRNA-seq experiments (experiments without metabolic labeling), we recommend using the kallisto | bustools [https://www.kallistobus.tools/] pipeline.

Caveats

The statistical estimation procedure described above comes with some caveats.

	The induced conversion rate (\(p_c\)) can not be estimated for cells with too few reads (defined by the option --cell-threshold).

	The fraction of labeled RNA (\(\pi_g\)) can not be estimated for cell-gene combinations with too few reads (defined by the option --cell-gene-threshold).

For statistical definitions of these variables, see Statistical estimation.

Therefore, for low coverage data, we expect many cell-gene combinations to not have any estimations in the Anndata layers prefixed with _est, indicated with zeros. It is possible to construct a boolean mask that contains True for cell-gene combinations that were successfully estimated and False otherwise. Note that we are using total reads.

estimated_mask = ((adata.layers['labeled_{conversion}'] + adata.layers['unlabeled_{conversion}']) > 0) & \
 ((adata.layers['labeled_{conversion}_est'] + adata.layers['unlabeled_{conversion}_est']) > 0)

Similarly, it is possible to construct a boolean mask that contains True for cell-gene combinations for which estimation failed (either due to having too few reads mapping at the cell level or the cell-gene level) and False otherwise.

failed_mask = ((adata.layers['labeled_{conversion}'] + adata.layers['unlabeled_{conversion}']) > 0) & \
 ((adata.layers['labeled_{conversion}_est'] + adata.layers['unlabeled_{conversion}_est']) == 0)

The same can be done with other Read groups.

Read groups

Dynast separates reads into read groups, and each of these groups are processed together.

	total: All reads. Used only when --no-splicing or --transcriptome-only is not used.

	transcriptome: Reads that map to the transcriptome. These are reads that have the GX tag in the BAM (or whatever you provide for the --gene-tag argument). This group also represents all reads when --no-splicing or --transcriptome-only is used.

	spliced: Spliced reads

	unspliced: Unspliced reads

	ambiguous: Ambiguous reads

The latter three groups are mutually exclusive.

Statistical estimation

Dynast can statistically estimate unlabeled and labeled RNA counts by modeling the distribution as a binomial mixture model [Jürges2018]. Statistical estimation can be run with dynast estimate (see estimate).

Overview

First, we define the following model parameters. For the remainder of this section, let the conversion be T>C. Note that all parameters are calculated per barcode (i.e. cell) unless otherwise specified.

\[\begin{split}\begin{align*}
 p_e &: \text{average conversion rate in unlabeled RNA}\\
 p_c &: \text{average conversion rate in labeled RNA}\\
 \pi_g &: \text{fraction of labeled RNA for gene } g\\
 y &: \text{number of observed T>C conversions (in a read)}\\
 n &: \text{number of T bases in the genomic region (a read maps to)}
 \end{align*}\end{split}\]

Then, the probability of observing \(k\) conversions given the above parameters is

\[\mathbb{P}(k;p_e,p_c,n,\pi) = (1-\pi_g) B(k;n,p_e) + \pi_g B(k;n,p_c)\]

where \(B(k,n,p)\) is the binomial PMF. The goal is to calculate \(\pi_g\), which can be used the split the raw counts to get the estimated counts. We can extract \(k\) and \(n\) directly from the read alignments, while calculating \(p_e\) and \(p_c\) is more complicated (detailed below).

Background estimation (\(p_e\))

If we have control samples (i.e. samples without the conversion-introducing treatment), we can calculate \(p_e\) directly by simply calculating the mutation rate of T to C. This is exactly what dynast does for --control samples. All cells are aggregated when calculating \(p_e\) for control samples.

Otherwise, we need to use other mutation rates as a proxy for the real T>C background mutation rate. In this case, \(p_e\) is calculated as the average conversion rate of all non-T bases to any other base. Mathematically,

\[p_e = average(r(A,C), r(A,G), \cdots, r(G,T))\]

where \(r(X,Y)\) is the observed conversion rate from X to Y, and \(average\) is the function that calculates the average of its arguments. Note that we do not use the conversion rates of conversions that start with a T. This is because T>C is our induced mutation, and this artificially deflates the T>A, T>G mutation rates (which can skew our \(p_e\) estimation to be lower than it should). In the event that multiple conversions are of interest, and they span all four bases as the initial base, then \(p_e\) estimation falls back to using all other conversions (regardless of start base).

Induced rate estimation (\(p_c\))

\(p_c\) is estimated via an expectation maximization (EM) algorithm by constructing a sparse matrix \(A\) where each element \(a_{k,n}\) is the number of reads with \(k\) T>C conversions and \(n\) T bases in the genomic region that each read align to. Assuming \(p_e < p_c\), we treat \(a_{k,n}\) as missing data if greater than or equal to 1% of the count is expected to originate from the \(p_e\) component. Mathematically, \(a_{k,n}\) is excluded if

\[e_{k,n}=B(k,n,p_e) \cdot \sum_{k' \geq k} a_{k',n} > 0.01 a_{k,n}\]

Let \(X=\{(k_1,n_1),\cdots\}\) be the excluded data. The E step fills in the excluded data by their expected values given the current estimate \(p_c^{(t)}\),

\[a_{k,n}^{(t+1)} = \frac{\sum_{(k',n) \not\in X} B(k,n,p_c^{(t)}) \cdot a_{k',n}}{\sum_{(k',n) \not\in X} B(k',n,p_c^{(t)})}\]

The M step updates the estimate for \(p_c\)

\[p_c^{(t+1)} = \frac{\sum_{k,n} ka_{k,n}^{(t+1)}}{\sum_{k,n} na_{k,n}^{(t+1)}}\]

Bayesian inference (\(\pi_g\))

The fraction of labeled RNA per cell \(\pi_c\) and per cell-gene \(\pi_g\) are estimated with Bayesian inference using the binomial mixture model described above. A Markov chain Monte Carlo (MCMC) approach is applied using the \(p_e\), \(p_c\), and the matrix \(A\) found/estimated in previous steps. This estimation procedure is implemented with pyStan [https://pystan.readthedocs.io/en/latest/], which is a Python interface to the Bayesian inference package Stan [https://mc-stan.org/]. The Stan model definition is here [https://github.com/aristoteleo/dynast-release/blob/main/dynast/models/pi.stan].

dynast

Subpackages

	dynast.benchmarking
	dynast.benchmarking.simulation

	dynast.estimation
	dynast.estimation.p_c

	dynast.estimation.p_e

	dynast.estimation.pi

	dynast.preprocessing
	dynast.preprocessing.aggregation

	dynast.preprocessing.bam

	dynast.preprocessing.consensus

	dynast.preprocessing.conversion

	dynast.preprocessing.coverage

	dynast.preprocessing.snp

Submodules

	dynast.align

	dynast.config

	dynast.consensus

	dynast.constants

	dynast.count

	dynast.estimate

	dynast.logging

	dynast.main

	dynast.ref

	dynast.stats

	dynast.technology

	dynast.utils

Package Contents

	
dynast.__version__ = 0.2.0

	

dynast.benchmarking

Submodules

	dynast.benchmarking.simulation

dynast.benchmarking.simulation

Module Contents

Functions

	generate_sequence(k, seed=None)

	Generate a random genome sequence of length k.

	simulate_reads(sequence, p_e, p_c, pi, l=100, n=100, seed=None)

	Simulate n reads of length l from a sequence.

	initializer(model)

	

	estimate(df_counts, p_e, p_c, pi, estimate_p_e=False, estimate_p_c=False, estimate_pi=True, model=None, nasc=False)

	

	_simulate(p_e, p_c, pi, sequence=None, k=10000, l=100, n=100, estimate_p_e=False, estimate_p_c=False, estimate_pi=True, seed=None, model=None, nasc=False)

	

	simulate(p_e, p_c, pi, sequence=None, k=10000, l=100, n=100, n_runs=16, n_threads=8, estimate_p_e=False, estimate_p_c=False, estimate_pi=True, model=None, nasc=False)

	

	simulate_batch(p_e, p_c, pi, l, n, estimate_p_e, estimate_p_c, estimate_pi, n_runs, n_threads, model, nasc=False)

	Helper function to run simulations in batches.

	plot_estimations(X, Y, n_runs, means, truth, ax=None, box=True, tick_decimals=1, title=None, xlabel=None, ylabel=None)

	

Attributes

	__model

	

	_pi_model

	

	
dynast.benchmarking.simulation.generate_sequence(k, seed=None)

	Generate a random genome sequence of length k.

	Parameters

	
	k (int) – length of the sequence

	seed (int, optional) – random seed, defaults to None

	Returns

	a random sequence

	Return type

	str

	
dynast.benchmarking.simulation.simulate_reads(sequence, p_e, p_c, pi, l=100, n=100, seed=None)

	Simulate n reads of length l from a sequence.

	Parameters

	
	sequence (str) – sequence to generate the reads from

	p_e (float) – background specific mutation rate. This is the rate a specific
base mutates to another specific base (i.e. T>C, A>G, …)

	p_c (float) – T>C mutation rate in labeled RNA

	pi (float) – fraction of labeled RNA

	l (int, optional) – length of each read, defaults to 100

	n (int, optional) – number of reads to simulate, defaults to 100

	seed (int, optional) – random seed, defaults to None

	Returns

	a dataframe with each read as a row and the number of conversions and
base content as the columns

	Return type

	pandas.DataFrame

	
dynast.benchmarking.simulation.__model

	

	
dynast.benchmarking.simulation._pi_model

	

	
dynast.benchmarking.simulation.initializer(model)

	

	
dynast.benchmarking.simulation.estimate(df_counts, p_e, p_c, pi, estimate_p_e=False, estimate_p_c=False, estimate_pi=True, model=None, nasc=False)

	

	
dynast.benchmarking.simulation._simulate(p_e, p_c, pi, sequence=None, k=10000, l=100, n=100, estimate_p_e=False, estimate_p_c=False, estimate_pi=True, seed=None, model=None, nasc=False)

	

	
dynast.benchmarking.simulation.simulate(p_e, p_c, pi, sequence=None, k=10000, l=100, n=100, n_runs=16, n_threads=8, estimate_p_e=False, estimate_p_c=False, estimate_pi=True, model=None, nasc=False)

	

	
dynast.benchmarking.simulation.simulate_batch(p_e, p_c, pi, l, n, estimate_p_e, estimate_p_c, estimate_pi, n_runs, n_threads, model, nasc=False)

	Helper function to run simulations in batches.

	
dynast.benchmarking.simulation.plot_estimations(X, Y, n_runs, means, truth, ax=None, box=True, tick_decimals=1, title=None, xlabel=None, ylabel=None)

	

dynast.estimation

Submodules

	dynast.estimation.p_c

	dynast.estimation.p_e

	dynast.estimation.pi

Package Contents

Functions

	estimate_p_c(df_aggregates, p_e, p_c_path, group_by=None, threshold=1000, n_threads=8, nasc=False)

	Estimate the average conversion rate in labeled RNA.

	read_p_c(p_c_path, group_by=None)

	Read p_c CSV as a dictionary, with group_by columns as keys.

	estimate_p_e(df_counts, p_e_path, conversions=frozenset([('TC',)]), group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the

	estimate_p_e_control(df_counts, p_e_path, conversions=frozenset([('TC',)]))

	Estimate background mutation rate of unlabeled RNA for a control sample

	estimate_p_e_nasc(df_rates, p_e_path, group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the

	read_p_e(p_e_path, group_by=None)

	Read p_e CSV as a dictionary, with group_by columns as keys.

	estimate_pi(df_aggregates, p_e, p_c, pi_path, group_by=None, p_group_by=None, n_threads=8, threshold=16, seed=None, nasc=False, model=None)

	Estimate the fraction of labeled RNA.

	read_pi(pi_path, group_by=None)

	Read pi CSV as a dictionary.

	
dynast.estimation.estimate_p_c(df_aggregates, p_e, p_c_path, group_by=None, threshold=1000, n_threads=8, nasc=False)

	Estimate the average conversion rate in labeled RNA.

	Parameters

	
	df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

	p_e (float) – background mutation rate of unlabeled RNA

	p_c_path (str) – path to output CSV containing p_c estimates

	group_by (list, optional) – columns to group by, defaults to None

	threshold (int, optional) – read count threshold, defaults to 1000

	n_threads (int, optional) – number of threads, defaults to 8

	nasc (bool, optional) – flag to indicate whether to use NASC-seq pipeline variant of
the EM algorithm, defaults to False

	Returns

	path to output CSV containing p_c estimates

	Return type

	str

	
dynast.estimation.read_p_c(p_c_path, group_by=None)

	Read p_c CSV as a dictionary, with group_by columns as keys.

	Parameters

	
	p_c_path (str) – path to CSV containing p_c values

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	dictionary with group_by columns as keys (tuple if multiple)

	Return type

	dictionary

	
dynast.estimation.estimate_p_e(df_counts, p_e_path, conversions=frozenset([('TC',)]), group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the
average mutation rate of all three nucleotides other than conversion[0].

	Parameters

	
	df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conversion and
nucleotide content of each read

	p_e_path (str) – path to output CSV containing p_e estimates

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	path to output CSV containing p_e estimates

	Return type

	str

	
dynast.estimation.estimate_p_e_control(df_counts, p_e_path, conversions=frozenset([('TC',)]))

	Estimate background mutation rate of unlabeled RNA for a control sample
by simply calculating the average mutation rate.

	Parameters

	
	df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conversion and
nucleotide content of each read

	p_e_path (str) – path to output CSV containing p_e estimates

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	Returns

	path to output CSV containing p_e estimates

	Return type

	str

	
dynast.estimation.estimate_p_e_nasc(df_rates, p_e_path, group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the
average CT and GA mutation rates. This function imitates the procedure
implemented in the NASC-seq pipeline (DOI: 10.1038/s41467-019-11028-9).

	Parameters

	
	df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conversion and
nucleotide content of each read

	p_e_path (str) – path to output CSV containing p_e estimates

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	path to output CSV containing p_e estimates

	Return type

	str

	
dynast.estimation.read_p_e(p_e_path, group_by=None)

	Read p_e CSV as a dictionary, with group_by columns as keys.

	Parameters

	
	p_e_path (str) – path to CSV containing p_e values

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	dictionary with group_by columns as keys (tuple if multiple)

	Return type

	dictionary

	
dynast.estimation.estimate_pi(df_aggregates, p_e, p_c, pi_path, group_by=None, p_group_by=None, n_threads=8, threshold=16, seed=None, nasc=False, model=None)

	Estimate the fraction of labeled RNA.

	Parameters

	
	df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

	p_e (float) – average mutation rate in unlabeled RNA

	p_c (float) – average mutation rate in labeled RNA

	pi_path (str) – path to write pi estimates

	group_by (list, optional) – columns that were used to group cells, defaults to
None

	p_group_by (list, optional) – columns that p_e/p_c estimation was grouped by, defaults to None

	n_threads (int, optional) – number of threads, defaults to 8

	threshold (int, optional) – any conversion-content pairs with fewer than this many reads
will not be processed, defaults to 16

	seed (int, optional) – random seed, defaults to None

	nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline. Specifically,
the mode of the estimated Beta distribution is used as pi, defaults to False

	model (pystan.StanModel, optional) – pyStan model to run MCMC with, defaults to None
if not provided, will try to compile the module manually

	Returns

	path to pi output

	Return type

	str

	
dynast.estimation.read_pi(pi_path, group_by=None)

	Read pi CSV as a dictionary.

	Parameters

	
	pi_path (str) – path to CSV containing pi values

	group_by (list, optional) – columns that were used to group estimation, defaults to
None

	Returns

	dictionary with barcodes and genes as keys

	Return type

	dictionary

dynast.estimation.p_c

Module Contents

Functions

	read_p_c(p_c_path, group_by=None)

	Read p_c CSV as a dictionary, with group_by columns as keys.

	binomial_pmf(k, n, p)

	Numbaized binomial PMF function for faster calculation.

	expectation_maximization_nasc(values, p_e, threshold=0.01)

	NASC-seq pipeline variant of the EM algorithm to estimate average

	expectation_maximization(values, p_e, p_c=0.1, threshold=0.01, max_iters=300)

	Run EM algorithm to estimate average conversion rate in labeled RNA.

	estimate_p_c(df_aggregates, p_e, p_c_path, group_by=None, threshold=1000, n_threads=8, nasc=False)

	Estimate the average conversion rate in labeled RNA.

	
dynast.estimation.p_c.read_p_c(p_c_path, group_by=None)

	Read p_c CSV as a dictionary, with group_by columns as keys.

	Parameters

	
	p_c_path (str) – path to CSV containing p_c values

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	dictionary with group_by columns as keys (tuple if multiple)

	Return type

	dictionary

	
dynast.estimation.p_c.binomial_pmf(k, n, p)

	Numbaized binomial PMF function for faster calculation.

	Parameters

	
	k (int) – number of successes

	n (int) – number of trials

	p (float) – probability of success

	Returns

	probability of observing k successes in n trials with probability
of success p

	Return type

	float

	
dynast.estimation.p_c.expectation_maximization_nasc(values, p_e, threshold=0.01)

	NASC-seq pipeline variant of the EM algorithm to estimate average
conversion rate in labeled RNA.

	Parameters

	
	values (numpy.ndarray) – array of three columns encoding a sparse array in
(row, column, value) format, zero-indexed, where

row: number of conversions
column: nucleotide content
value: number of reads

	p_e (float) – background mutation rate of unlabeled RNA

	threshold (float, optional) – filter threshold, defaults to 0.01

	Returns

	estimated conversion rate

	Return type

	float

	
dynast.estimation.p_c.expectation_maximization(values, p_e, p_c=0.1, threshold=0.01, max_iters=300)

	Run EM algorithm to estimate average conversion rate in labeled RNA.

This function runs the following two steps.
1) Constructs a sparse matrix representation of values and filters out certain

indices that are expected to contain more than threshold proportion of unlabeled reads.

	Runs an EM algorithm that iteratively updates the filtered out data and
stimation.

See https://doi.org/10.1093/bioinformatics/bty256.

	Parameters

	
	values (numpy.ndarray) – array of three columns encoding a sparse array in
(row, column, value) format, zero-indexed, where

row: number of conversions
column: nucleotide content
value: number of reads

	p_e (float) – background mutation rate of unlabeled RNA

	p_c (float, optional) – initial p_c value, defaults to 0.1

	threshold (float, optional) – filter threshold, defaults to 0.01

	max_iters (int, optional) – maximum number of EM iterations, defaults to 300

	Returns

	estimated conversion rate

	Return type

	float

	
dynast.estimation.p_c.estimate_p_c(df_aggregates, p_e, p_c_path, group_by=None, threshold=1000, n_threads=8, nasc=False)

	Estimate the average conversion rate in labeled RNA.

	Parameters

	
	df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

	p_e (float) – background mutation rate of unlabeled RNA

	p_c_path (str) – path to output CSV containing p_c estimates

	group_by (list, optional) – columns to group by, defaults to None

	threshold (int, optional) – read count threshold, defaults to 1000

	n_threads (int, optional) – number of threads, defaults to 8

	nasc (bool, optional) – flag to indicate whether to use NASC-seq pipeline variant of
the EM algorithm, defaults to False

	Returns

	path to output CSV containing p_c estimates

	Return type

	str

dynast.estimation.p_e

Module Contents

Functions

	read_p_e(p_e_path, group_by=None)

	Read p_e CSV as a dictionary, with group_by columns as keys.

	estimate_p_e_control(df_counts, p_e_path, conversions=frozenset([('TC',)]))

	Estimate background mutation rate of unlabeled RNA for a control sample

	estimate_p_e(df_counts, p_e_path, conversions=frozenset([('TC',)]), group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the

	estimate_p_e_nasc(df_rates, p_e_path, group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the

	
dynast.estimation.p_e.read_p_e(p_e_path, group_by=None)

	Read p_e CSV as a dictionary, with group_by columns as keys.

	Parameters

	
	p_e_path (str) – path to CSV containing p_e values

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	dictionary with group_by columns as keys (tuple if multiple)

	Return type

	dictionary

	
dynast.estimation.p_e.estimate_p_e_control(df_counts, p_e_path, conversions=frozenset([('TC',)]))

	Estimate background mutation rate of unlabeled RNA for a control sample
by simply calculating the average mutation rate.

	Parameters

	
	df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conversion and
nucleotide content of each read

	p_e_path (str) – path to output CSV containing p_e estimates

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	Returns

	path to output CSV containing p_e estimates

	Return type

	str

	
dynast.estimation.p_e.estimate_p_e(df_counts, p_e_path, conversions=frozenset([('TC',)]), group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the
average mutation rate of all three nucleotides other than conversion[0].

	Parameters

	
	df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conversion and
nucleotide content of each read

	p_e_path (str) – path to output CSV containing p_e estimates

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	path to output CSV containing p_e estimates

	Return type

	str

	
dynast.estimation.p_e.estimate_p_e_nasc(df_rates, p_e_path, group_by=None)

	Estimate background mutation rate of unabeled RNA by calculating the
average CT and GA mutation rates. This function imitates the procedure
implemented in the NASC-seq pipeline (DOI: 10.1038/s41467-019-11028-9).

	Parameters

	
	df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conversion and
nucleotide content of each read

	p_e_path (str) – path to output CSV containing p_e estimates

	group_by (list, optional) – columns to group by, defaults to None

	Returns

	path to output CSV containing p_e estimates

	Return type

	str

dynast.estimation.pi

Module Contents

Functions

	read_pi(pi_path, group_by=None)

	Read pi CSV as a dictionary.

	initializer(model)

	Multiprocessing initializer.

	beta_mean(alpha, beta)

	Calculate the mean of a beta distribution.

	beta_mode(alpha, beta)

	Calculate the mode of a beta distribution.

	guess_beta_parameters(guess, strength=5)

	Given a guess of the mean of a beta distribution, calculate beta

	fit_stan_mcmc(values, p_e, p_c, guess=0.5, model=None, n_chains=1, n_warmup=1000, n_iters=1000, seed=None)

	Run MCMC to estimate the fraction of labeled RNA.

	estimate_pi(df_aggregates, p_e, p_c, pi_path, group_by=None, p_group_by=None, n_threads=8, threshold=16, seed=None, nasc=False, model=None)

	Estimate the fraction of labeled RNA.

Attributes

	_model

	

	
dynast.estimation.pi.read_pi(pi_path, group_by=None)

	Read pi CSV as a dictionary.

	Parameters

	
	pi_path (str) – path to CSV containing pi values

	group_by (list, optional) – columns that were used to group estimation, defaults to
None

	Returns

	dictionary with barcodes and genes as keys

	Return type

	dictionary

	
dynast.estimation.pi._model

	

	
dynast.estimation.pi.initializer(model)

	Multiprocessing initializer.
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor

This initializer performs a one-time expensive initialization for each
process.

	
dynast.estimation.pi.beta_mean(alpha, beta)

	Calculate the mean of a beta distribution.
https://en.wikipedia.org/wiki/Beta_distribution

	Parameters

	
	alpha (float) – first parameter of the beta distribution

	beta (float) – second parameter of the beta distribution

	Returns

	mean of the beta distribution

	Return type

	float

	
dynast.estimation.pi.beta_mode(alpha, beta)

	Calculate the mode of a beta distribution.
https://en.wikipedia.org/wiki/Beta_distribution

When the distribution is bimodal (alpha, beta < 1), this function returns
nan.

	Parameters

	
	alpha (float) – first parameter of the beta distribution

	beta (float) – second parameter of the beta distribution

	Returns

	mode of the beta distribution

	Return type

	float

	
dynast.estimation.pi.guess_beta_parameters(guess, strength=5)

	Given a guess of the mean of a beta distribution, calculate beta
distribution parameters such that the distribution is skewed by some
strength toward the guess.

	Parameters

	
	guess (float) – guess of the mean of the beta distribution

	strength (int) – strength of the skew, defaults to 5

	Returns

	beta distribution parameters (alpha, beta)

	Return type

	(float, float)

	
dynast.estimation.pi.fit_stan_mcmc(values, p_e, p_c, guess=0.5, model=None, n_chains=1, n_warmup=1000, n_iters=1000, seed=None)

	Run MCMC to estimate the fraction of labeled RNA.

	Parameters

	
	values (numpy.ndarray) – array of three columns encoding a sparse array in
(row, column, value) format, zero-indexed, where

row: number of conversions
column: nucleotide content
value: number of reads

	p_e (float) – average mutation rate in unlabeled RNA

	p_c (float) – average mutation rate in labeled RNA

	guess (float, optional) – guess for the fraction of labeled RNA, defaults to 0.5

	model (pystan.StanModel, optional) – pyStan model to run MCMC with, defaults to None
if not provided, will try to use the _model global variable

	n_chains (int, optional) – number of MCMC chains, defaults to 1

	n_warmup (int, optional) – number of warmup iterations, defaults to 1000

	n_iters (int, optional) – number of MCMC iterations, excluding any warmups, defaults to 1000

	seed (int, optional) – random seed used for MCMC, defaults to None

	Returns

	(guess, alpha, beta, pi)

	Return type

	(float, float, float, float)

	
dynast.estimation.pi.estimate_pi(df_aggregates, p_e, p_c, pi_path, group_by=None, p_group_by=None, n_threads=8, threshold=16, seed=None, nasc=False, model=None)

	Estimate the fraction of labeled RNA.

	Parameters

	
	df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

	p_e (float) – average mutation rate in unlabeled RNA

	p_c (float) – average mutation rate in labeled RNA

	pi_path (str) – path to write pi estimates

	group_by (list, optional) – columns that were used to group cells, defaults to
None

	p_group_by (list, optional) – columns that p_e/p_c estimation was grouped by, defaults to None

	n_threads (int, optional) – number of threads, defaults to 8

	threshold (int, optional) – any conversion-content pairs with fewer than this many reads
will not be processed, defaults to 16

	seed (int, optional) – random seed, defaults to None

	nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline. Specifically,
the mode of the estimated Beta distribution is used as pi, defaults to False

	model (pystan.StanModel, optional) – pyStan model to run MCMC with, defaults to None
if not provided, will try to compile the module manually

	Returns

	path to pi output

	Return type

	str

dynast.preprocessing

Submodules

	dynast.preprocessing.aggregation

	dynast.preprocessing.bam

	dynast.preprocessing.consensus

	dynast.preprocessing.conversion

	dynast.preprocessing.coverage

	dynast.preprocessing.snp

Package Contents

Functions

	aggregate_counts(df_counts, aggregates_path, conversions=frozenset([('TC',)]))

	Aggregate conversion counts for each pair of bases.

	calculate_mutation_rates(df_counts, rates_path, group_by=None)

	Calculate mutation rate for each pair of bases.

	merge_aggregates(*dfs)

	Merge multiple aggregate dataframes into one.

	read_aggregates(aggregates_path)

	Read aggregates CSV as a pandas dataframe.

	read_rates(rates_path)

	Read mutation rates CSV as a pandas dataframe.

	check_bam_contains_duplicate(bam_path, n_reads=100000, n_threads=8)

	

	check_bam_contains_secondary(bam_path, n_reads=100000, n_threads=8)

	

	check_bam_contains_unmapped(bam_path)

	

	get_tags_from_bam(bam_path, n_reads=100000, n_threads=8)

	Utility function to retrieve all read tags present in a BAM.

	parse_all_reads(bam_path, conversions_path, alignments_path, index_path, gene_infos, transcript_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, n_threads=8, temp_dir=None, nasc=False, control=False, velocity=True, strict_exon_overlap=False, return_splits=False)

	Parse all reads in a BAM and extract conversion, content and alignment

	read_alignments(alignments_path, *args, **kwargs)

	Read alignments CSV as a pandas DataFrame.

	read_conversions(conversions_path, *args, **kwargs)

	Read conversions CSV as a pandas DataFrame.

	select_alignments(df_alignments)

	Select alignments among duplicates. This function performs preliminary

	sort_and_index_bam(bam_path, out_path, n_threads=8, temp_dir=None)

	Sort and index BAM.

	call_consensus(bam_path, out_path, gene_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, quality=27, add_RS_RI=False, temp_dir=None, n_threads=8)

	

	complement_counts(df_counts, gene_infos)

	Complement the counts in the counts dataframe according to gene strand.

	count_conversions(conversions_path, alignments_path, index_path, counts_path, gene_infos, barcodes=None, snps=None, quality=27, conversions=None, dedup_use_conversions=True, n_threads=8, temp_dir=None)

	Count the number of conversions of each read per barcode and gene, along with

	deduplicate_counts(df_counts, conversions=None, use_conversions=True)

	Deduplicate counts based on barcode, UMI, and gene.

	read_counts(counts_path, *args, **kwargs)

	Read counts CSV as a pandas dataframe.

	split_counts_by_velocity(df_counts)

	Split the given counts dataframe by the velocity column.

	calculate_coverage(bam_path, conversions, coverage_path, alignments=None, umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, velocity=True)

	Calculate coverage of each genomic position per barcode.

	read_coverage(coverage_path)

	Read coverage CSV as a dictionary.

	detect_snps(conversions_path, index_path, coverage, snps_path, alignments=None, conversions=None, quality=27, threshold=0.5, min_coverage=1, n_threads=8)

	Detect SNPs.

	read_snp_csv(snp_csv)

	Read a user-provided SNPs CSV

	read_snps(snps_path)

	Read SNPs CSV as a dictionary

Attributes

	CONVERSION_COMPLEMENT

	

	
dynast.preprocessing.aggregate_counts(df_counts, aggregates_path, conversions=frozenset([('TC',)]))

	Aggregate conversion counts for each pair of bases.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand bases

	aggregates_path (str) – path to write aggregate CSV

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	Returns

	path to aggregate CSV that was written

	Return type

	str

	
dynast.preprocessing.calculate_mutation_rates(df_counts, rates_path, group_by=None)

	Calculate mutation rate for each pair of bases.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand bases

	rates_path (str) – path to write rates CSV

	group_by (list) – column(s) to group calculations by, defaults to None, which
combines all rows

	Returns

	path to rates CSV

	Return type

	str

	
dynast.preprocessing.merge_aggregates(*dfs)

	Merge multiple aggregate dataframes into one.

	Parameters

	*dfs – dataframes to merge

	Returns

	merged dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.read_aggregates(aggregates_path)

	Read aggregates CSV as a pandas dataframe.

	Parameters

	aggregates_path (str) – path to aggregates CSV

	Returns

	aggregates dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.read_rates(rates_path)

	Read mutation rates CSV as a pandas dataframe.

	Parameters

	rates_path (str) – path to rates CSV

	Returns

	rates dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.check_bam_contains_duplicate(bam_path, n_reads=100000, n_threads=8)

	

	
dynast.preprocessing.check_bam_contains_secondary(bam_path, n_reads=100000, n_threads=8)

	

	
dynast.preprocessing.check_bam_contains_unmapped(bam_path)

	

	
dynast.preprocessing.get_tags_from_bam(bam_path, n_reads=100000, n_threads=8)

	Utility function to retrieve all read tags present in a BAM.

	Parameters

	
	bam_path (str) – path to BAM

	n_reads (int, optional) – number of reads to consider, defaults to 100000

	n_threads (int, optional) – number of threads, defaults to 8

	Returns

	set of all tags found

	Return type

	set

	
dynast.preprocessing.parse_all_reads(bam_path, conversions_path, alignments_path, index_path, gene_infos, transcript_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, n_threads=8, temp_dir=None, nasc=False, control=False, velocity=True, strict_exon_overlap=False, return_splits=False)

	Parse all reads in a BAM and extract conversion, content and alignment
information as CSVs.

	Parameters

	
	bam_path (str) – path to alignment BAM file

	conversions_path (str) – path to output information about reads that have conversions

	alignments_path (str) – path to alignments information about reads

	index_path (str) – path to conversions index

	no_index_path (str) – path to no conversions index

	gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf

	transcript_infos (dictionary) – dictionary containing transcript information,
as returned by ngs.gtf.genes_and_transcripts_from_gtf

	strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, unstranded

	umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in the
umi column, defaults to None

	barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

	gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline, defaults to False

	velocity (bool, optional) – whether or not to assign a velocity type to each read,
defaults to True

	strict_exon_overlap (bool, optional) – Whether to use a stricter algorithm to assin reads
as spliced, defaults to False

	return_splits (bool, optional) – return BAM splits for later reuse, defaults to True

	Returns

	(path to conversions, path to alignments, path to conversions index)
If return_splits is True, then there is an additional return value, which
is a list of tuples containing split BAM paths and number of reads
in each BAM.

	Return type

	(str, str, str) or (str, str, str, list)

	
dynast.preprocessing.read_alignments(alignments_path, *args, **kwargs)

	Read alignments CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

	Parameters

	alignments_path (str) – path to alignments CSV

	Returns

	conversions dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.read_conversions(conversions_path, *args, **kwargs)

	Read conversions CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

	Parameters

	conversions_path (str) – path to conversions CSV

	Returns

	conversions dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.select_alignments(df_alignments)

	Select alignments among duplicates. This function performs preliminary
deduplication and returns a list of tuples (read_id, alignment index) to
use for coverage calculation and SNP detection.

	Parameters

	df_alignments (pandas.DataFrame) – alignments dataframe

	Returns

	set of (read_id, alignment index) that were selected

	Return type

	set

	
dynast.preprocessing.sort_and_index_bam(bam_path, out_path, n_threads=8, temp_dir=None)

	Sort and index BAM.

If the BAM is already sorted, the sorting step is skipped.

	Parameters

	
	bam_path (str) – path to alignment BAM file to sort

	out_path (str) – path to output sorted BAM

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	Returns

	path to sorted and indexed BAM

	Return type

	str

	
dynast.preprocessing.call_consensus(bam_path, out_path, gene_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, quality=27, add_RS_RI=False, temp_dir=None, n_threads=8)

	

	
dynast.preprocessing.complement_counts(df_counts, gene_infos)

	Complement the counts in the counts dataframe according to gene strand.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	gene_infos (dictionary) – dictionary containing gene information, as returned by
preprocessing.gtf.parse_gtf

	Returns

	counts dataframe with counts complemented for reads mapping to genes
on the reverse strand

	Return type

	pandas.DataFrame

	
dynast.preprocessing.CONVERSION_COMPLEMENT

	

	
dynast.preprocessing.count_conversions(conversions_path, alignments_path, index_path, counts_path, gene_infos, barcodes=None, snps=None, quality=27, conversions=None, dedup_use_conversions=True, n_threads=8, temp_dir=None)

	Count the number of conversions of each read per barcode and gene, along with
the total nucleotide content of the region each read mapped to, also per barcode.
When a duplicate UMI for a barcode is observed, the read with the greatest
number of conversions is selected.

	Parameters

	
	conversions_path (str) – path to conversions CSV

	alignments_path (str) – path to alignments information about reads

	index_path (str) – path to conversions index

	counts_path – path to write counts CSV

	counts_path – str

	gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf, defaults to None

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	snps (dictionary, optional) – dictionary of contig as keys and list of genomic positions as
values that indicate SNP locations, defaults to None

	conversions (list, optional) – conversions to prioritize when deduplicating only applicable
for UMI technologies, defaults to None

	dedup_use_conversions (bool, optional) – prioritize reads that have at least one conversion
when deduplicating, defaults to True

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	Returns

	path to counts CSV

	Return type

	str

	
dynast.preprocessing.deduplicate_counts(df_counts, conversions=None, use_conversions=True)

	Deduplicate counts based on barcode, UMI, and gene.

The order of priority is the following.
1. If use_conversions=True, reads that have at least one such conversion
2. Reads that align to the transcriptome (exon only)
3. Reads that have highest alignment score
4. If conversions is provided, reads that have a larger sum of such conversions

If conversions is not provided, reads that have larger sum of all conversions

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	conversions (list, optional) – conversions to prioritize, defaults to None

	use_conversions (bool, optional) – prioritize reads that have conversions first, defaults
to True

	Returns

	deduplicated counts dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.read_counts(counts_path, *args, **kwargs)

	Read counts CSV as a pandas dataframe.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

	Parameters

	counts_path (str) – path to CSV

	Returns

	counts dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.split_counts_by_velocity(df_counts)

	Split the given counts dataframe by the velocity column.

	Parameters

	df_counts (pandas.DataFrame) – counts dataframe

	Returns

	dictionary containing velocity column values as keys and the
subset dataframe as values

	Return type

	dictionary

	
dynast.preprocessing.calculate_coverage(bam_path, conversions, coverage_path, alignments=None, umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, velocity=True)

	Calculate coverage of each genomic position per barcode.

	Parameters

	
	bam_path (str) – path to alignment BAM file

	conversions (dictionary) – dictionary of contigs as keys and sets of genomic positions
as values that indicates positions where conversions were observed

	coverage_path (str) – path to write coverage CSV

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in the
umi column, defaults to None

	barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

	gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	temp_dir (str, optional) – path to temporary directory, defaults to None

	velocity (bool, optional) – whether or not velocities were assigned

	Returns

	coverage CSV path

	Return type

	str

	
dynast.preprocessing.read_coverage(coverage_path)

	Read coverage CSV as a dictionary.

	Parameters

	coverage_path (str) – path to coverage CSV

	Returns

	coverage as a nested dictionary

	Return type

	dict

	
dynast.preprocessing.detect_snps(conversions_path, index_path, coverage, snps_path, alignments=None, conversions=None, quality=27, threshold=0.5, min_coverage=1, n_threads=8)

	Detect SNPs.

	Parameters

	
	conversions_path (str) – path to conversions CSV

	index_path (str) – path to conversions index

	coverage (dict) – dictionary containing genomic coverage

	snps_path (str) – path to output SNPs

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	conversions (set, optional) – set of conversions to consider

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	threshold (float, optional) – positions with conversions / coverage > threshold will be
considered as SNPs, defaults to 0.5

	min_coverage (int, optional) – only positions with at least this many mapping read_snps
are considered, defaults to 1

	n_threads (int, optional) – number of threads, defaults to 8

	
dynast.preprocessing.read_snp_csv(snp_csv)

	Read a user-provided SNPs CSV

	Parameters

	snp_csv (str) – path to SNPs CSV

	Returns

	dictionary of contigs as keys and sets of genomic positions with SNPs as values

	Return type

	dictionary

	
dynast.preprocessing.read_snps(snps_path)

	Read SNPs CSV as a dictionary

	Parameters

	snps_path (str) – path to SNPs CSV

	Returns

	dictionary of contigs as keys and sets of genomic positions with SNPs as values

	Return type

	dictionary

dynast.preprocessing.aggregation

Module Contents

Functions

	read_rates(rates_path)

	Read mutation rates CSV as a pandas dataframe.

	read_aggregates(aggregates_path)

	Read aggregates CSV as a pandas dataframe.

	merge_aggregates(*dfs)

	Merge multiple aggregate dataframes into one.

	calculate_mutation_rates(df_counts, rates_path, group_by=None)

	Calculate mutation rate for each pair of bases.

	aggregate_counts(df_counts, aggregates_path, conversions=frozenset([('TC',)]))

	Aggregate conversion counts for each pair of bases.

	
dynast.preprocessing.aggregation.read_rates(rates_path)

	Read mutation rates CSV as a pandas dataframe.

	Parameters

	rates_path (str) – path to rates CSV

	Returns

	rates dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.aggregation.read_aggregates(aggregates_path)

	Read aggregates CSV as a pandas dataframe.

	Parameters

	aggregates_path (str) – path to aggregates CSV

	Returns

	aggregates dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.aggregation.merge_aggregates(*dfs)

	Merge multiple aggregate dataframes into one.

	Parameters

	*dfs – dataframes to merge

	Returns

	merged dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.aggregation.calculate_mutation_rates(df_counts, rates_path, group_by=None)

	Calculate mutation rate for each pair of bases.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand bases

	rates_path (str) – path to write rates CSV

	group_by (list) – column(s) to group calculations by, defaults to None, which
combines all rows

	Returns

	path to rates CSV

	Return type

	str

	
dynast.preprocessing.aggregation.aggregate_counts(df_counts, aggregates_path, conversions=frozenset([('TC',)]))

	Aggregate conversion counts for each pair of bases.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand bases

	aggregates_path (str) – path to write aggregate CSV

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	Returns

	path to aggregate CSV that was written

	Return type

	str

dynast.preprocessing.bam

Module Contents

Functions

	read_alignments(alignments_path, *args, **kwargs)

	Read alignments CSV as a pandas DataFrame.

	read_conversions(conversions_path, *args, **kwargs)

	Read conversions CSV as a pandas DataFrame.

	select_alignments(df_alignments)

	Select alignments among duplicates. This function performs preliminary

	parse_read_contig(counter, lock, bam_path, contig, gene_infos=None, transcript_infos=None, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, update_every=2000, nasc=False, velocity=True, strict_exon_overlap=False)

	Parse all reads mapped to a contig, outputing conversion

	get_tags_from_bam(bam_path, n_reads=100000, n_threads=8)

	Utility function to retrieve all read tags present in a BAM.

	check_bam_tags_exist(bam_path, tags, n_reads=100000, n_threads=8)

	Utility function to check if BAM tags exists in a BAM within the first

	check_bam_is_paired(bam_path, n_reads=100000, n_threads=8)

	Utility function to check if BAM has paired reads.

	check_bam_contains_secondary(bam_path, n_reads=100000, n_threads=8)

	

	check_bam_contains_unmapped(bam_path)

	

	check_bam_contains_duplicate(bam_path, n_reads=100000, n_threads=8)

	

	sort_and_index_bam(bam_path, out_path, n_threads=8, temp_dir=None)

	Sort and index BAM.

	split_bam(bam_path, n, n_threads=8, temp_dir=None)

	Split BAM into n parts.

	parse_all_reads(bam_path, conversions_path, alignments_path, index_path, gene_infos, transcript_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, n_threads=8, temp_dir=None, nasc=False, control=False, velocity=True, strict_exon_overlap=False, return_splits=False)

	Parse all reads in a BAM and extract conversion, content and alignment

Attributes

	CONVERSION_CSV_COLUMNS

	

	ALIGNMENT_COLUMNS

	

	
dynast.preprocessing.bam.CONVERSION_CSV_COLUMNS = ['read_id', 'index', 'contig', 'genome_i', 'conversion', 'quality']

	

	
dynast.preprocessing.bam.ALIGNMENT_COLUMNS = ['read_id', 'index', 'barcode', 'umi', 'GX', 'A', 'C', 'G', 'T', 'velocity', 'transcriptome', 'score']

	

	
dynast.preprocessing.bam.read_alignments(alignments_path, *args, **kwargs)

	Read alignments CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

	Parameters

	alignments_path (str) – path to alignments CSV

	Returns

	conversions dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.bam.read_conversions(conversions_path, *args, **kwargs)

	Read conversions CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

	Parameters

	conversions_path (str) – path to conversions CSV

	Returns

	conversions dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.bam.select_alignments(df_alignments)

	Select alignments among duplicates. This function performs preliminary
deduplication and returns a list of tuples (read_id, alignment index) to
use for coverage calculation and SNP detection.

	Parameters

	df_alignments (pandas.DataFrame) – alignments dataframe

	Returns

	set of (read_id, alignment index) that were selected

	Return type

	set

	
dynast.preprocessing.bam.parse_read_contig(counter, lock, bam_path, contig, gene_infos=None, transcript_infos=None, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, update_every=2000, nasc=False, velocity=True, strict_exon_overlap=False)

	Parse all reads mapped to a contig, outputing conversion
information as temporary CSVs. This function is designed to be called as a
separate process.

	Parameters

	
	counter (multiprocessing.Value) – counter that keeps track of how many reads have been processed

	lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do not
modify it at the same time

	bam_path (str) – path to alignment BAM file

	contig (str) – only reads that map to this contig will be processed

	gene_infos (dictionary) – dictionary containing gene information, as returned by
preprocessing.gtf.parse_gtf, required if velocity=True,
defaults to None

	transcript_infos (dictionary) – dictionary containing transcript information,
as returned by preprocessing.gtf.parse_gtf,
required if velocity=True, defaults to None

	strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, None (unstranded)

	umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in the
umi column, defaults to None

	barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

	gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	temp_dir (str, optional) – path to temporary directory, defaults to None

	update_every (int, optional) – update the counter every this many reads, defaults to 5000

	nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline, defaults to False

	velocity (bool, optional) – whether or not to assign a velocity type to each read,
defaults to True

	strict_exon_overlap (bool, optional) – Whether to use a stricter algorithm to assin reads
as spliced, defaults to False

	Returns

	(path to conversions, path to conversions index, path to alignments)

	Return type

	(str, str, str)

	
dynast.preprocessing.bam.get_tags_from_bam(bam_path, n_reads=100000, n_threads=8)

	Utility function to retrieve all read tags present in a BAM.

	Parameters

	
	bam_path (str) – path to BAM

	n_reads (int, optional) – number of reads to consider, defaults to 100000

	n_threads (int, optional) – number of threads, defaults to 8

	Returns

	set of all tags found

	Return type

	set

	
dynast.preprocessing.bam.check_bam_tags_exist(bam_path, tags, n_reads=100000, n_threads=8)

	Utility function to check if BAM tags exists in a BAM within the first
n_reads reads.

	Parameters

	
	bam_path (str) – path to BAM

	tags (list) – tags to check for

	n_reads (int, optional) – number of reads to consider, defaults to 100000

	n_threads (int, optional) – number of threads, defaults to 8

	Returns

	(whether all tags were found, list of not found tags)

	Return type

	(bool, list)

	
dynast.preprocessing.bam.check_bam_is_paired(bam_path, n_reads=100000, n_threads=8)

	Utility function to check if BAM has paired reads.

	Parameters

	
	bam_path (str) – path to BAM

	n_reads (int, optional) – number of reads to consider, defaults to 100000

	n_threads (int, optional) – number of threads, defaults to 8

	Returns

	whether paired reads were detected

	Return type

	bool

	
dynast.preprocessing.bam.check_bam_contains_secondary(bam_path, n_reads=100000, n_threads=8)

	

	
dynast.preprocessing.bam.check_bam_contains_unmapped(bam_path)

	

	
dynast.preprocessing.bam.check_bam_contains_duplicate(bam_path, n_reads=100000, n_threads=8)

	

	
dynast.preprocessing.bam.sort_and_index_bam(bam_path, out_path, n_threads=8, temp_dir=None)

	Sort and index BAM.

If the BAM is already sorted, the sorting step is skipped.

	Parameters

	
	bam_path (str) – path to alignment BAM file to sort

	out_path (str) – path to output sorted BAM

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	Returns

	path to sorted and indexed BAM

	Return type

	str

	
dynast.preprocessing.bam.split_bam(bam_path, n, n_threads=8, temp_dir=None)

	Split BAM into n parts.

	Parameters

	
	bam_path (str) – path to alignment BAM file

	n (int) – number of splits

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	Returns

	List of tuples containing (split BAM path, number of reads)

	Return type

	list

	
dynast.preprocessing.bam.parse_all_reads(bam_path, conversions_path, alignments_path, index_path, gene_infos, transcript_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, n_threads=8, temp_dir=None, nasc=False, control=False, velocity=True, strict_exon_overlap=False, return_splits=False)

	Parse all reads in a BAM and extract conversion, content and alignment
information as CSVs.

	Parameters

	
	bam_path (str) – path to alignment BAM file

	conversions_path (str) – path to output information about reads that have conversions

	alignments_path (str) – path to alignments information about reads

	index_path (str) – path to conversions index

	no_index_path (str) – path to no conversions index

	gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf

	transcript_infos (dictionary) – dictionary containing transcript information,
as returned by ngs.gtf.genes_and_transcripts_from_gtf

	strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, unstranded

	umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in the
umi column, defaults to None

	barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

	gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline, defaults to False

	velocity (bool, optional) – whether or not to assign a velocity type to each read,
defaults to True

	strict_exon_overlap (bool, optional) – Whether to use a stricter algorithm to assin reads
as spliced, defaults to False

	return_splits (bool, optional) – return BAM splits for later reuse, defaults to True

	Returns

	(path to conversions, path to alignments, path to conversions index)
If return_splits is True, then there is an additional return value, which
is a list of tuples containing split BAM paths and number of reads
in each BAM.

	Return type

	(str, str, str) or (str, str, str, list)

dynast.preprocessing.consensus

Module Contents

Functions

	call_consensus_from_reads(reads, header, quality=27, tags=None)

	Call a single consensus alignment given a list of aligned reads.

	call_consensus_from_reads_process(reads, header, tags, strand=None, quality=27)

	

	consensus_worker(args_q, results_q, *args, **kwargs)

	

	call_consensus(bam_path, out_path, gene_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, quality=27, add_RS_RI=False, temp_dir=None, n_threads=8)

	

Attributes

	BASES

	

	BASE_IDX

	

	
dynast.preprocessing.consensus.BASES = ['A', 'C', 'G', 'T']

	

	
dynast.preprocessing.consensus.BASE_IDX

	

	
dynast.preprocessing.consensus.call_consensus_from_reads(reads, header, quality=27, tags=None)

	Call a single consensus alignment given a list of aligned reads.

Reads must map to the same contig. Results are undefined otherwise.
Additionally, consensus bases are called only for positions that match
to the reference (i.e. no insertions allowed).

This function only sets the minimal amount of attributes such that the
alignment is valid. These include:
* read name – SHA256 hash of the provided read names
* read sequence and qualities
* reference name and ID
* reference start
* mapping quality (MAPQ)
* cigarstring
* MD tag
* NM tag
* Not unmapped, paired, duplicate, qc fail, secondary, nor supplementary

The caller is expected to further populate the alignment
with additional tags, flags, and name.

	Parameters

	
	reads (list) – List of reads to call a consensus sequence from

	header (pysam.AlignmentHeader) – header to use when creating the new pysam alignment

	quality (int, optional) – quality threshold, defaults to 27

	tags (dict, optional) – additional tags to set, defaults to None

	Returns

	(New pysam alignment of the consensus sequence)

	Return type

	pysam.AlignedSegment

	
dynast.preprocessing.consensus.call_consensus_from_reads_process(reads, header, tags, strand=None, quality=27)

	

	
dynast.preprocessing.consensus.consensus_worker(args_q, results_q, *args, **kwargs)

	

	
dynast.preprocessing.consensus.call_consensus(bam_path, out_path, gene_infos, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, quality=27, add_RS_RI=False, temp_dir=None, n_threads=8)

	

dynast.preprocessing.conversion

Module Contents

Functions

	read_counts(counts_path, *args, **kwargs)

	Read counts CSV as a pandas dataframe.

	complement_counts(df_counts, gene_infos)

	Complement the counts in the counts dataframe according to gene strand.

	drop_multimappers(df_counts, conversions=None)

	Drop multimappings that have the same read ID where

	deduplicate_counts(df_counts, conversions=None, use_conversions=True)

	Deduplicate counts based on barcode, UMI, and gene.

	drop_multimappers_part(counter, lock, split_path, out_path)

	

	deduplicate_counts_part(counter, lock, split_path, out_path, conversions=None, use_conversions=True)

	

	split_counts_by_velocity(df_counts)

	Split the given counts dataframe by the velocity column.

	count_no_conversions(alignments_path, counter, lock, index, barcodes=None, temp_dir=None, update_every=10000)

	Count reads that have no conversion.

	count_conversions_part(conversions_path, alignments_path, counter, lock, index, barcodes=None, snps=None, quality=27, temp_dir=None, update_every=10000)

	Count the number of conversions of each read per barcode and gene, along with

	count_conversions(conversions_path, alignments_path, index_path, counts_path, gene_infos, barcodes=None, snps=None, quality=27, conversions=None, dedup_use_conversions=True, n_threads=8, temp_dir=None)

	Count the number of conversions of each read per barcode and gene, along with

Attributes

	CONVERSIONS_PARSER

	

	ALIGNMENTS_PARSER

	

	CONVERSION_IDX

	

	BASE_IDX

	

	CONVERSION_COMPLEMENT

	

	CONVERSION_COLUMNS

	

	BASE_COLUMNS

	

	COLUMNS

	

	CSV_COLUMNS

	

	
dynast.preprocessing.conversion.CONVERSIONS_PARSER

	

	
dynast.preprocessing.conversion.ALIGNMENTS_PARSER

	

	
dynast.preprocessing.conversion.CONVERSION_IDX

	

	
dynast.preprocessing.conversion.BASE_IDX

	

	
dynast.preprocessing.conversion.CONVERSION_COMPLEMENT

	

	
dynast.preprocessing.conversion.CONVERSION_COLUMNS

	

	
dynast.preprocessing.conversion.BASE_COLUMNS

	

	
dynast.preprocessing.conversion.COLUMNS

	

	
dynast.preprocessing.conversion.CSV_COLUMNS

	

	
dynast.preprocessing.conversion.read_counts(counts_path, *args, **kwargs)

	Read counts CSV as a pandas dataframe.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

	Parameters

	counts_path (str) – path to CSV

	Returns

	counts dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.conversion.complement_counts(df_counts, gene_infos)

	Complement the counts in the counts dataframe according to gene strand.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	gene_infos (dictionary) – dictionary containing gene information, as returned by
preprocessing.gtf.parse_gtf

	Returns

	counts dataframe with counts complemented for reads mapping to genes
on the reverse strand

	Return type

	pandas.DataFrame

	
dynast.preprocessing.conversion.drop_multimappers(df_counts, conversions=None)

	Drop multimappings that have the same read ID where
* some map to the transcriptome while some do not – drop non-transcriptome alignments
* none map to the transcriptome AND aligned to multiple genes – drop all
* none map to the transcriptome AND assigned multiple velocity types – set to ambiguous

TODO: This function can probably be removed because BAM parsing only considers
primary alignments now.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	conversions (list, optional) – conversions to prioritize, defaults to None

	Returns

	counts dataframe with multimappers appropriately filtered

	Return type

	pandas.DataFrame

	
dynast.preprocessing.conversion.deduplicate_counts(df_counts, conversions=None, use_conversions=True)

	Deduplicate counts based on barcode, UMI, and gene.

The order of priority is the following.
1. If use_conversions=True, reads that have at least one such conversion
2. Reads that align to the transcriptome (exon only)
3. Reads that have highest alignment score
4. If conversions is provided, reads that have a larger sum of such conversions

If conversions is not provided, reads that have larger sum of all conversions

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	conversions (list, optional) – conversions to prioritize, defaults to None

	use_conversions (bool, optional) – prioritize reads that have conversions first, defaults
to True

	Returns

	deduplicated counts dataframe

	Return type

	pandas.DataFrame

	
dynast.preprocessing.conversion.drop_multimappers_part(counter, lock, split_path, out_path)

	

	
dynast.preprocessing.conversion.deduplicate_counts_part(counter, lock, split_path, out_path, conversions=None, use_conversions=True)

	

	
dynast.preprocessing.conversion.split_counts_by_velocity(df_counts)

	Split the given counts dataframe by the velocity column.

	Parameters

	df_counts (pandas.DataFrame) – counts dataframe

	Returns

	dictionary containing velocity column values as keys and the
subset dataframe as values

	Return type

	dictionary

	
dynast.preprocessing.conversion.count_no_conversions(alignments_path, counter, lock, index, barcodes=None, temp_dir=None, update_every=10000)

	Count reads that have no conversion.

	Parameters

	
	alignments_path (str) – alignments CSV path

	counter (multiprocessing.Value) – counter that keeps track of how many reads have been processed

	lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do not
modify it at the same time

	index (list) – index for conversions CSV

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	temp_dir (str, optional) – path to temporary directory, defaults to None

	update_every (int, optional) – update the counter every this many reads, defaults to 5000

	Returns

	path to temporary counts CSV

	Return type

	str

	
dynast.preprocessing.conversion.count_conversions_part(conversions_path, alignments_path, counter, lock, index, barcodes=None, snps=None, quality=27, temp_dir=None, update_every=10000)

	Count the number of conversions of each read per barcode and gene, along with
the total nucleotide content of the region each read mapped to, also per barcode
and gene. This function is used exclusively for multiprocessing.

	Parameters

	
	conversions_path (str) – path to conversions CSV

	alignments_path (str) – path to alignments information about reads

	counter (multiprocessing.Value) – counter that keeps track of how many reads have been processed

	lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do not
modify it at the same time

	index (list) – list of (file position, number of lines) tuples to process

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	snps (dictionary, optional) – dictionary of contig as keys and list of genomic positions as
values that indicate SNP locations, defaults to None

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	temp_dir (str, optional) – path to temporary directory, defaults to None

	update_every (int, optional) – update the counter every this many reads, defaults to 10000

	Returns

	path to temporary counts CSV

	Return type

	tuple

	
dynast.preprocessing.conversion.count_conversions(conversions_path, alignments_path, index_path, counts_path, gene_infos, barcodes=None, snps=None, quality=27, conversions=None, dedup_use_conversions=True, n_threads=8, temp_dir=None)

	Count the number of conversions of each read per barcode and gene, along with
the total nucleotide content of the region each read mapped to, also per barcode.
When a duplicate UMI for a barcode is observed, the read with the greatest
number of conversions is selected.

	Parameters

	
	conversions_path (str) – path to conversions CSV

	alignments_path (str) – path to alignments information about reads

	index_path (str) – path to conversions index

	counts_path – path to write counts CSV

	counts_path – str

	gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf, defaults to None

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	snps (dictionary, optional) – dictionary of contig as keys and list of genomic positions as
values that indicate SNP locations, defaults to None

	conversions (list, optional) – conversions to prioritize when deduplicating only applicable
for UMI technologies, defaults to None

	dedup_use_conversions (bool, optional) – prioritize reads that have at least one conversion
when deduplicating, defaults to True

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	n_threads (int, optional) – number of threads, defaults to 8

	temp_dir (str, optional) – path to temporary directory, defaults to None

	Returns

	path to counts CSV

	Return type

	str

dynast.preprocessing.coverage

Module Contents

Functions

	read_coverage(coverage_path)

	Read coverage CSV as a dictionary.

	calculate_coverage_contig(counter, lock, bam_path, contig, indices, alignments=None, umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, update_every=50000, velocity=True)

	Calculate converage for a specific contig. This function is designed to

	calculate_coverage(bam_path, conversions, coverage_path, alignments=None, umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, velocity=True)

	Calculate coverage of each genomic position per barcode.

Attributes

	COVERAGE_PARSER

	

	
dynast.preprocessing.coverage.COVERAGE_PARSER

	

	
dynast.preprocessing.coverage.read_coverage(coverage_path)

	Read coverage CSV as a dictionary.

	Parameters

	coverage_path (str) – path to coverage CSV

	Returns

	coverage as a nested dictionary

	Return type

	dict

	
dynast.preprocessing.coverage.calculate_coverage_contig(counter, lock, bam_path, contig, indices, alignments=None, umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, update_every=50000, velocity=True)

	Calculate converage for a specific contig. This function is designed to
be called as a separate process.

	Parameters

	
	counter (multiprocessing.Value) – counter that keeps track of how many reads have been processed

	lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do not
modify it at the same time

	bam_path (str) – path to alignment BAM file

	contig (str) – only reads that map to this contig will be processed

	indices (list) – genomic positions to consider

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in the
umi column, defaults to None

	barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

	gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	temp_dir (str, optional) – path to temporary directory, defaults to None

	update_every (int, optional) – update the counter every this many reads, defaults to 30000

	velocity (bool, optional) – whether or not velocities were assigned

	Returns

	coverag

	Return type

	dict

	
dynast.preprocessing.coverage.calculate_coverage(bam_path, conversions, coverage_path, alignments=None, umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, temp_dir=None, velocity=True)

	Calculate coverage of each genomic position per barcode.

	Parameters

	
	bam_path (str) – path to alignment BAM file

	conversions (dictionary) – dictionary of contigs as keys and sets of genomic positions
as values that indicates positions where conversions were observed

	coverage_path (str) – path to write coverage CSV

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in the
umi column, defaults to None

	barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

	gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

	barcodes (list, optional) – list of barcodes to be considered. All barcodes are considered
if not provided, defaults to None

	temp_dir (str, optional) – path to temporary directory, defaults to None

	velocity (bool, optional) – whether or not velocities were assigned

	Returns

	coverage CSV path

	Return type

	str

dynast.preprocessing.snp

Module Contents

Functions

	read_snps(snps_path)

	Read SNPs CSV as a dictionary

	read_snp_csv(snp_csv)

	Read a user-provided SNPs CSV

	extract_conversions_part(conversions_path, counter, lock, index, alignments=None, conversions=None, quality=27, update_every=5000)

	Extract number of conversions for every genomic position.

	extract_conversions(conversions_path, index_path, alignments=None, conversions=None, quality=27, n_threads=8)

	Wrapper around extract_conversions_part that works in parallel

	detect_snps(conversions_path, index_path, coverage, snps_path, alignments=None, conversions=None, quality=27, threshold=0.5, min_coverage=1, n_threads=8)

	Detect SNPs.

Attributes

	SNP_COLUMNS

	

	
dynast.preprocessing.snp.SNP_COLUMNS = ['contig', 'genome_i', 'conversion']

	

	
dynast.preprocessing.snp.read_snps(snps_path)

	Read SNPs CSV as a dictionary

	Parameters

	snps_path (str) – path to SNPs CSV

	Returns

	dictionary of contigs as keys and sets of genomic positions with SNPs as values

	Return type

	dictionary

	
dynast.preprocessing.snp.read_snp_csv(snp_csv)

	Read a user-provided SNPs CSV

	Parameters

	snp_csv (str) – path to SNPs CSV

	Returns

	dictionary of contigs as keys and sets of genomic positions with SNPs as values

	Return type

	dictionary

	
dynast.preprocessing.snp.extract_conversions_part(conversions_path, counter, lock, index, alignments=None, conversions=None, quality=27, update_every=5000)

	Extract number of conversions for every genomic position.

	Parameters

	
	conversions_path (str) – path to conversions CSV

	counter (multiprocessing.Value) – counter that keeps track of how many reads have been processed

	lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do not
modify it at the same time

	index (list) – list of (file position, number of lines) tuples to process

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	conversions (set, optional) – set of conversions to consider

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	update_every (int, optional) – update the counter every this many reads, defaults to 5000

	Returns

	nested dictionary that contains number of conversions for each contig and position

	Return type

	dictionary

	
dynast.preprocessing.snp.extract_conversions(conversions_path, index_path, alignments=None, conversions=None, quality=27, n_threads=8)

	Wrapper around extract_conversions_part that works in parallel

	Parameters

	
	conversions_path (str) – path to conversions CSV

	index_path (str) – path to conversions index

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	conversions (set, optional) – set of conversions to consider

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	n_threads (int, optional) – number of threads, defaults to 8

	Returns

	nested dictionary that contains number of conversions for each contig and position

	Return type

	dictionary

	
dynast.preprocessing.snp.detect_snps(conversions_path, index_path, coverage, snps_path, alignments=None, conversions=None, quality=27, threshold=0.5, min_coverage=1, n_threads=8)

	Detect SNPs.

	Parameters

	
	conversions_path (str) – path to conversions CSV

	index_path (str) – path to conversions index

	coverage (dict) – dictionary containing genomic coverage

	snps_path (str) – path to output SNPs

	alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

	conversions (set, optional) – set of conversions to consider

	quality (int, optional) – only count conversions with PHRED quality greater than this value,
defaults to 27

	threshold (float, optional) – positions with conversions / coverage > threshold will be
considered as SNPs, defaults to 0.5

	min_coverage (int, optional) – only positions with at least this many mapping read_snps
are considered, defaults to 1

	n_threads (int, optional) – number of threads, defaults to 8

dynast.align

Module Contents

Functions

	STAR_solo(fastqs, index_dir, out_dir, technology, whitelist_path=None, strand='forward', n_threads=8, temp_dir=None, nasc=False, overrides=None)

	Align FASTQs with STARsolo.

	align(fastqs, index_dir, out_dir, technology, whitelist_path=None, strand='forward', n_threads=8, temp_dir=None, nasc=False, overrides=None)

	

	
dynast.align.STAR_solo(fastqs, index_dir, out_dir, technology, whitelist_path=None, strand='forward', n_threads=8, temp_dir=None, nasc=False, overrides=None)

	Align FASTQs with STARsolo.

	Parameters

	
	fastqs (list) – list of path to FASTQs. Order matters – STAR assumes the
UMI and barcode are in read 2

	index_dir (str) – path to directory containing STAR index

	out_dir (str) – path to directory to place STAR output

	technology (collections.namedtuple) – a Technology object defined in technology.py

	whitelist_path (str, optional) – path to textfile containing barcode whitelist,
defaults to None

	strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, unstranded

	n_threads (int, optional) – number of threads to use, defaults to 8

	temp_dir (str, optional) – STAR temporary directory, defaults to None, which
uses the system temporary directory

	nasc (bool, optional) – whether or not to use STAR configuration used in NASC-seq pipeline,
defaults to False

	overrides (dictionary, optional) – STAR command-line argument overrides, defaults to None

	Returns

	dictionary containing output files

	Return type

	dict

	
dynast.align.align(fastqs, index_dir, out_dir, technology, whitelist_path=None, strand='forward', n_threads=8, temp_dir=None, nasc=False, overrides=None)

	

dynast.config

Module Contents

	
dynast.config.PACKAGE_PATH

	

	
dynast.config.PLATFORM

	

	
dynast.config.BINS_DIR

	

	
dynast.config.MODELS_DIR

	

	
dynast.config.MODEL_PATH

	

	
dynast.config.MODEL_NAME = pi

	

	
dynast.config.RECOMMENDED_MEMORY

	

	
dynast.config.STAR_ARGUMENTS

	

	
dynast.config.STAR_SOLO_ARGUMENTS

	

	
dynast.config.NASC_ARGUMENTS

	

	
dynast.config.BAM_PEEK_READS = 500000

	

	
dynast.config.BAM_REQUIRED_TAGS = ['MD']

	

	
dynast.config.BAM_READGROUP_TAG = RG

	

	
dynast.config.BAM_BARCODE_TAG = CB

	

	
dynast.config.BAM_UMI_TAG = UB

	

	
dynast.config.BAM_GENE_TAG = GX

	

	
dynast.config.BAM_CONSENSUS_READ_COUNT_TAG = RN

	

	
dynast.config.COUNTS_SPLIT_THRESHOLD = 50000

	

	
dynast.config.VELOCITY_BLACKLIST = ['unassigned', 'ambiguous']

	

dynast.consensus

Module Contents

Functions

	consensus(bam_path, gtf_path, out_dir, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, quality=27, add_RS_RI=False, n_threads=8, temp_dir=None)

	

	
dynast.consensus.consensus(bam_path, gtf_path, out_dir, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, quality=27, add_RS_RI=False, n_threads=8, temp_dir=None)

	

dynast.constants

Module Contents

	
dynast.constants.STATS_PREFIX = run_info

	

	
dynast.constants.STAR_SOLO_DIR = Solo.out

	

	
dynast.constants.STAR_GENE_DIR = Gene

	

	
dynast.constants.STAR_RAW_DIR = raw

	

	
dynast.constants.STAR_FILTERED_DIR = filtered

	

	
dynast.constants.STAR_VELOCYTO_DIR = Velocyto

	

	
dynast.constants.STAR_BAM_FILENAME = Aligned.sortedByCoord.out.bam

	

	
dynast.constants.STAR_BAI_FILENAME = Aligned.sortedByCoord.out.bai

	

	
dynast.constants.STAR_BARCODES_FILENAME = barcodes.tsv

	

	
dynast.constants.STAR_FEATURES_FILENAME = features.tsv

	

	
dynast.constants.STAR_MATRIX_FILENAME = matrix.mtx

	

	
dynast.constants.CONSENSUS_BAM_FILENAME = consensus.bam

	

	
dynast.constants.COUNT_DIR = count

	

	
dynast.constants.PARSE_DIR = 0_parse

	

	
dynast.constants.CONVS_FILENAME = convs.pkl.gz

	

	
dynast.constants.GENES_FILENAME = genes.pkl.gz

	

	
dynast.constants.CONVERSIONS_FILENAME = conversions.csv

	

	
dynast.constants.CONVERSIONS_INDEX_FILENAME = conversions.idx

	

	
dynast.constants.ALIGNMENTS_FILENAME = alignments.csv

	

	
dynast.constants.COVERAGE_FILENAME = coverage.csv

	

	
dynast.constants.COVERAGE_INDEX_FILENAME = coverage.idx

	

	
dynast.constants.SNPS_FILENAME = snps.csv

	

	
dynast.constants.COUNTS_PREFIX = counts

	

	
dynast.constants.ESTIMATE_DIR = estimate

	

	
dynast.constants.RATES_FILENAME = rates.csv

	

	
dynast.constants.P_E_FILENAME = p_e.csv

	

	
dynast.constants.P_C_PREFIX = p_c

	

	
dynast.constants.AGGREGATE_FILENAME = aggregate.csv

	

	
dynast.constants.ADATA_FILENAME = adata.h5ad

	

dynast.count

Module Contents

Functions

	count(bam_path, gtf_path, out_dir, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, control=False, quality=27, conversions=frozenset([('TC',)]), snp_threshold=0.5, snp_min_coverage=1, snp_csv=None, n_threads=8, temp_dir=None, velocity=True, strict_exon_overlap=False, dedup_mode='auto', nasc=False, overwrite=False)

	

	
dynast.count.count(bam_path, gtf_path, out_dir, strand='forward', umi_tag=None, barcode_tag=None, gene_tag='GX', barcodes=None, control=False, quality=27, conversions=frozenset([('TC',)]), snp_threshold=0.5, snp_min_coverage=1, snp_csv=None, n_threads=8, temp_dir=None, velocity=True, strict_exon_overlap=False, dedup_mode='auto', nasc=False, overwrite=False)

	

dynast.estimate

Module Contents

Functions

	estimate(count_dirs, out_dir, reads='complete', groups=None, ignore_groups_for_pi=True, genes=None, downsample=None, downsample_mode='uniform', cell_threshold=1000, cell_gene_threshold=16, control_p_e=None, control=False, n_threads=8, temp_dir=None, nasc=False, seed=None)

	

	
dynast.estimate.estimate(count_dirs, out_dir, reads='complete', groups=None, ignore_groups_for_pi=True, genes=None, downsample=None, downsample_mode='uniform', cell_threshold=1000, cell_gene_threshold=16, control_p_e=None, control=False, n_threads=8, temp_dir=None, nasc=False, seed=None)

	

dynast.logging

Module Contents

	
dynast.logging.logger

	

dynast.main

Module Contents

Functions

	print_technologies()

	Displays a list of supported technologies along with whether a whitelist

	setup_ref_args(parser, parent)

	Helper function to set up a subparser for the ref command.

	setup_align_args(parser, parent)

	

	setup_consensus_args(parser, parent)

	Helper function to set up a subparser for the consensus command.

	setup_count_args(parser, parent)

	Helper function to set up a subparser for the count command.

	setup_estimate_args(parser, parent)

	Helper function to set up a subparser for the estimate command.

	parse_ref(parser, args, temp_dir=None)

	Parser for the ref command.

	parse_align(parser, args, temp_dir=None)

	

	parse_consensus(parser, args, temp_dir=None)

	Parser for the consensus command.

	parse_count(parser, args, temp_dir=None)

	Parser for the count command.

	parse_estimate(parser, args, temp_dir=None)

	

	main()

	

Attributes

	COMMAND_TO_FUNCTION

	

	
dynast.main.print_technologies()

	Displays a list of supported technologies along with whether a whitelist
is provided for that technology.

	
dynast.main.setup_ref_args(parser, parent)

	Helper function to set up a subparser for the ref command.

	Parameters

	
	parser – argparse parser to add the ref command to

	parent – argparse parser parent of the newly added subcommand.
used to inherit shared commands/flags

	Returns

	the newly added parser

	Return type

	argparse.ArgumentParser

	
dynast.main.setup_align_args(parser, parent)

	

	
dynast.main.setup_consensus_args(parser, parent)

	Helper function to set up a subparser for the consensus command.

	Parameters

	
	parser – argparse parser to add the consensus command to

	parent – argparse parser parent of the newly added subcommand.
used to inherit shared commands/flags

	Returns

	the newly added parser

	Return type

	argparse.ArgumentParser

	
dynast.main.setup_count_args(parser, parent)

	Helper function to set up a subparser for the count command.

	Parameters

	
	parser – argparse parser to add the count command to

	parent – argparse parser parent of the newly added subcommand.
used to inherit shared commands/flags

	Returns

	the newly added parser

	Return type

	argparse.ArgumentParser

	
dynast.main.setup_estimate_args(parser, parent)

	Helper function to set up a subparser for the estimate command.

	Parameters

	
	parser – argparse parser to add the estimate command to

	parent – argparse parser parent of the newly added subcommand.
used to inherit shared commands/flags

	Returns

	the newly added parser

	Return type

	argparse.ArgumentParser

	
dynast.main.parse_ref(parser, args, temp_dir=None)

	Parser for the ref command.
:param args: Command-line arguments dictionary, as parsed by argparse
:type args: dict

	
dynast.main.parse_align(parser, args, temp_dir=None)

	

	
dynast.main.parse_consensus(parser, args, temp_dir=None)

	Parser for the consensus command.
:param args: Command-line arguments dictionary, as parsed by argparse
:type args: dict

	
dynast.main.parse_count(parser, args, temp_dir=None)

	Parser for the count command.
:param args: Command-line arguments dictionary, as parsed by argparse
:type args: dict

	
dynast.main.parse_estimate(parser, args, temp_dir=None)

	

	
dynast.main.COMMAND_TO_FUNCTION

	

	
dynast.main.main()

	

dynast.ref

Module Contents

Functions

	STAR_genomeGenerate(fasta_path, gtf_path, index_dir, n_threads=8, memory=16 * 1024**3, temp_dir=None)

	Generate a STAR index from a reference.

	ref(fasta_path, gtf_path, index_dir, n_threads=8, memory=16 * 1024**3, temp_dir=None)

	

	
dynast.ref.STAR_genomeGenerate(fasta_path, gtf_path, index_dir, n_threads=8, memory=16 * 1024 ** 3, temp_dir=None)

	Generate a STAR index from a reference.

	Parameters

	
	fasta_path (str) – path to genome fasta

	gtf_path (str) – path to GTF annotation

	index_dir (str) – path to output STAR index

	n_threads (int, optional) – number of threads, defaults to 8

	memory (int, optional) – suggested memory to use (this is not guaranteed), in bytes,
defaults to 16 * 1024**3

	temp_dir (str, optional) – temporary directory, defaults to None

	Returns

	dictionary of generated index

	Return type

	dictionary

	
dynast.ref.ref(fasta_path, gtf_path, index_dir, n_threads=8, memory=16 * 1024 ** 3, temp_dir=None)

	

dynast.stats

Module Contents

Classes

	Step

	Class that represents a processing step.

	Stats

	Class used to collect run statistics.

	
class dynast.stats.Step(skipped=False, **kwargs)

	Class that represents a processing step.

	
start(self)

	Signal the step has started.

	
end(self)

	Signal the step has ended.

	
to_dict(self)

	Convert this step to a dictionary.

	Returns

	dictionary of class variables

	Return type

	dictionary

	
class dynast.stats.Stats

	Class used to collect run statistics.

	
start(self)

	Start collecting statistics.

Sets start time, the command line call.

	
end(self)

	End collecting statistics.

	
step(self, key, skipped=False, **kwargs)

	Register a processing step.

Any additional keyword arguments are passed to the constructor of Step.

	Parameters

	
	key (str) – processing key

	skipped (bool, optional) – whether or not this step is skipped, defaults to False

	
save(self, path)

	Save statistics as JSON to path.

	Parameters

	path (str) – path to JSON

	Returns

	path to saved JSON

	Return type

	str

	
to_dict(self)

	Convert statistics to dictionary, so that it is easily parsed
by the report-rendering functions.

dynast.technology

Module Contents

	
dynast.technology.Technology

	

	
dynast.technology.BARCODE_UMI_TECHNOLOGIES

	

	
dynast.technology.PLATE_TECHNOLOGIES

	

	
dynast.technology.TECHNOLOGIES

	

	
dynast.technology.TECHNOLOGIES_MAP

	

dynast.utils

Module Contents

Classes

	suppress_stdout_stderr

	A context manager for doing a "deep suppression" of stdout and stderr in

Functions

	get_STAR_binary_path()

	Get the path to the platform-dependent STAR binary included with

	get_STAR_version()

	Get the provided STAR version.

	combine_arguments(args, additional)

	Combine two dictionaries representing command-line arguments.

	arguments_to_list(args)

	Convert a dictionary of command-line arguments to a list.

	get_file_descriptor_limit()

	Get the current value for the maximum number of open file descriptors

	get_max_file_descriptor_limit()

	Get the maximum allowed value for the maximum number of open file

	increase_file_descriptor_limit(limit)

	Context manager that can be used to temporarily increase the maximum

	get_available_memory()

	Get total amount of available memory (total memory - used memory) in bytes.

	make_pool_with_counter(n_threads)

	Create a new Process pool with a shared progress counter.

	display_progress_with_counter(counter, total, *async_results, desc=None)

	Display progress bar for displaying multiprocessing progress.

	as_completed_with_progress(futures)

	Wrapper around concurrent.futures.as_completed that displays a progress bar.

	split_index(index, n=8)

	Split a conversions index, which is a list of tuples (file position,

	downsample_counts(df_counts, proportion=None, count=None, seed=None, group_by=None)

	Downsample the given counts dataframe according to the proportion or

	counts_to_matrix(df_counts, barcodes, features, barcode_column='barcode', feature_column='GX')

	Convert a counts dataframe to a sparse counts matrix.

	split_counts(df_counts, barcodes, features, barcode_column='barcode', feature_column='GX', conversions=('TC',))

	Split counts dataframe into two count matrices by a column.

	split_matrix(matrix, pis, barcodes, features)

	Split the given matrix based on provided fraction of new RNA.

	results_to_adata(df_counts, conversions=frozenset([('TC',)]), gene_infos=None, pis=None)

	Compile all results to a single anndata.

	patch_mp_connection_bpo_17560()

	Apply PR-10305 / bpo-17560 connection send/receive max size update

Attributes

	run_executable

	

	open_as_text

	

	decompress_gzip

	

	flatten_dict_values

	

	mkstemp

	

	all_exists

	

	flatten_dictionary

	

	flatten_iter

	

	merge_dictionaries

	

	write_pickle

	

	read_pickle

	

	
dynast.utils.run_executable

	

	
dynast.utils.open_as_text

	

	
dynast.utils.decompress_gzip

	

	
dynast.utils.flatten_dict_values

	

	
dynast.utils.mkstemp

	

	
dynast.utils.all_exists

	

	
dynast.utils.flatten_dictionary

	

	
dynast.utils.flatten_iter

	

	
dynast.utils.merge_dictionaries

	

	
dynast.utils.write_pickle

	

	
dynast.utils.read_pickle

	

	
exception dynast.utils.UnsupportedOSException

	Bases: Exception

Common base class for all non-exit exceptions.

	
class dynast.utils.suppress_stdout_stderr

	A context manager for doing a “deep suppression” of stdout and stderr in
Python, i.e. will suppress all print, even if the print originates in a
compiled C/Fortran sub-function.

This will not suppress raised exceptions, since exceptions are printed

to stderr just before a script exits, and after the context manager has
exited (at least, I think that is why it lets exceptions through).
https://github.com/facebook/prophet/issues/223

	
__enter__(self)

	

	
__exit__(self, *_)

	

	
dynast.utils.get_STAR_binary_path()

	Get the path to the platform-dependent STAR binary included with
the installation.

	Returns

	path to the binary

	Return type

	str

	
dynast.utils.get_STAR_version()

	Get the provided STAR version.

	Returns

	version string

	Return type

	str

	
dynast.utils.combine_arguments(args, additional)

	Combine two dictionaries representing command-line arguments.

Any duplicate keys will be merged according to the following procedure:
1. If the value in both dictionaries are lists, the two lists are combined.
2. Otherwise, the value in the first dictionary is OVERWRITTEN.

	Parameters

	
	args (dictionary) – original command-line arguments

	additional (dictionary) – additional command-line arguments

	Returns

	combined command-line arguments

	Return type

	dictionary

	
dynast.utils.arguments_to_list(args)

	Convert a dictionary of command-line arguments to a list.

	Parameters

	args (dictionary) – command-line arguments

	Returns

	list of command-line arguments

	Return type

	list

	
dynast.utils.get_file_descriptor_limit()

	Get the current value for the maximum number of open file descriptors
in a platform-dependent way.

	Returns

	the current value of the maximum number of open file descriptors.

	Return type

	int

	
dynast.utils.get_max_file_descriptor_limit()

	Get the maximum allowed value for the maximum number of open file
descriptors.

Note that for Windows, there is not an easy way to get this,
as it requires reading from the registry. So, we just return the maximum for
a vanilla Windows installation, which is 8192.
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setmaxstdio?view=vs-2019

Similarly, on MacOS, we return a hardcoded 10240.

	Returns

	maximum allowed value for the maximum number of open file descriptors

	Return type

	int

	
dynast.utils.increase_file_descriptor_limit(limit)

	Context manager that can be used to temporarily increase the maximum
number of open file descriptors for the current process. The original
value is restored when execution exits this function.

This is required when running STAR with many threads.

	Parameters

	limit (int) – maximum number of open file descriptors will be increased to
this value for the duration of the context

	
dynast.utils.get_available_memory()

	Get total amount of available memory (total memory - used memory) in bytes.

	Returns

	available memory in bytes

	Return type

	int

	
dynast.utils.make_pool_with_counter(n_threads)

	Create a new Process pool with a shared progress counter.

	Parameters

	n_threads (int) – number of processes

	Returns

	(Process pool, progress counter, lock)

	Return type

	(multiprocessing.Pool, multiprocessing.Value, multiprocessing.Lock)

	
dynast.utils.display_progress_with_counter(counter, total, *async_results, desc=None)

	Display progress bar for displaying multiprocessing progress.

	Parameters

	
	counter (multiprocessing.Value) – progress counter

	total (int) – maximum number of units of processing

	*async_results – multiprocessing results to monitor. These are used to
determine when all processes are done.

	desc (str, optional) – progress bar description, defaults to None

	
dynast.utils.as_completed_with_progress(futures)

	Wrapper around concurrent.futures.as_completed that displays a progress bar.

	Parameters

	futures (iterable) – iterator of concurrent.futures.Future objects

	
dynast.utils.split_index(index, n=8)

	Split a conversions index, which is a list of tuples (file position,
number of lines, alignment position), one for each read, into n
approximately equal parts. This function is used to split the conversions
CSV for multiprocessing.

	Parameters

	
	index (list) – index

	n (int, optional) – number of splits, defaults to 8

	Returns

	list of parts, where each part is a list of
(file position, number of lines, alignment position) tuples

	Return type

	list

	
dynast.utils.downsample_counts(df_counts, proportion=None, count=None, seed=None, group_by=None)

	Downsample the given counts dataframe according to the proportion or
count arguments. One of these two must be provided, but not both. The dataframe
is assumed to be UMI-deduplicated.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	proportion (float, optional) – proportion of reads (UMIs) to keep, defaults to None

	count (int, optional) – absolute number of reads (UMIs) to keep, defaults to None

	seed (int, optional) – random seed, defaults to None

	group_by (list, optional) – Columns in the counts dataframe to use to group entries.
When this is provided, UMIs are no longer sampled at random, but instead
grouped by this argument, and only groups that have more than count UMIs
are downsampled.

	Returns

	downsampled counts dataframe

	Return type

	pandas.DataFrame

	
dynast.utils.counts_to_matrix(df_counts, barcodes, features, barcode_column='barcode', feature_column='GX')

	Convert a counts dataframe to a sparse counts matrix.

Counts are assumed to be appropriately deduplicated.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	barcodes (list) – list of barcodes that will map to the rows

	features (list) – list of features (i.e. genes) that will map to the columns

	barcode_column (str) – column in counts dataframe to use as barcodes, defaults to barcode

	feature_column (str) – column in counts dataframe to use as features, defaults to GX

	Returns

	sparse counts matrix

	Return type

	scipy.sparse.csrmatrix

	
dynast.utils.split_counts(df_counts, barcodes, features, barcode_column='barcode', feature_column='GX', conversions=('TC',))

	Split counts dataframe into two count matrices by a column.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe

	barcodes (list) – list of barcodes that will map to the rows

	features (list) – list of features (i.e. genes) that will map to the columns

	barcode_column (str, optional) – column in counts dataframe to use as barcodes, defaults to barcode

	feature_column (str, optional) – column in counts dataframe to use as features, defaults to GX

	conversions (tuple, optional) – conversion(s) in question, defaults to (‘TC’,)

	Returns

	(count matrix of conversion==0, count matrix of conversion>0)

	Return type

	(scipy.sparse.csrmatrix, scipy.sparse.csrmatrix)

	
dynast.utils.split_matrix(matrix, pis, barcodes, features)

	Split the given matrix based on provided fraction of new RNA.

	Parameters

	
	matrix (numpy.ndarray or scipy.sparse.spmatrix) – matrix to split

	pis (dictionary) – dictionary containing pi estimates

	barcodes (list) – all barcodes

	features (list) – all features (i.e. genes)

	Returns

	(matrix of pi masks, matrix of unlabeled RNA, matrix of labeled RNA)

	Return type

	(scipy.sparse.spmatrix, scipy.sparse.spmatrix, scipy.sparse.spmatrix)

	
dynast.utils.results_to_adata(df_counts, conversions=frozenset([('TC',)]), gene_infos=None, pis=None)

	Compile all results to a single anndata.

	Parameters

	
	df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand bases

	conversions (list, optional) – conversion(s) in question, defaults to frozenset([(‘TC’,)])

	gene_infos (dict, optional) – dictionary containing gene information, defaults to None

	pis (dict, optional) – dictionary of estimated pis, defaults to None

	Returns

	anndata containing all results

	Return type

	anndata.AnnData

	
dynast.utils.patch_mp_connection_bpo_17560()

	Apply PR-10305 / bpo-17560 connection send/receive max size update

See the original issue at https://bugs.python.org/issue17560 and
https://github.com/python/cpython/pull/10305 for the pull request.

This only supports Python versions 3.3 - 3.7, this function
does nothing for Python versions outside of that range.

Taken from https://stackoverflow.com/a/47776649

References

	Dobin2013

	https://doi.org/10.1093/bioinformatics/bts635

	Picelli2013

	https://doi.org/10.1038/nmeth.2639

	Macosko2015

	https://doi.org/10.1016/j.cell.2015.05.002

	Herzog2017

	https://doi.org/10.1038/nmeth.4435

	Jürges2018

	https://doi.org/10.1093/bioinformatics/bty256

	Erhard2019

	https://doi.org/10.1038/s41586-019-1369-y

	Hendriks2019

	https://doi.org/10.1038/s41467-019-11028-9

	Cao2020

	https://doi.org/10.1038/s41587-020-0480-9

	Qiu2020

	https://doi.org/10.1038/s41592-020-0935-4

NASC-seq

The new transcriptome alkylation-dependent scRNA-seq (NASC-seq) was developed by [Hendriks2019]. It uses Smart-seq, which is a plate-based scRNA-seq method that provides great read coverage, compared to droplet-based methods [Picelli2013]. Smart-seq experiments generate single or pairs of FASTQs for each cell sequenced, which dynast processes simultaneously.

	Sequencing technology: Smart-Seq2

	Induced conversion: T>C

Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). Since we have multiple sets of FASTQs, we need to prepare a FASTQ manifest CSV, instead of providing these as an argument to dynast align. The manifest CSV contains three columns where the first column is a unique cell name/ID, the second column is the path to the first FASTQ, and the third is the path to the second FASTQ. For single-end reads, the third column can be a single - character. Here is an example with two cells:

cell_1,path/to/R1.fastq.gz,path/to/R2.fastq.gz
cell_2,path/to/R1.fastq.gz,-

Then, we use this manifest as the input to dynast align.

dynast align -i path/to/STAR/index -o path/to/align/output -x smartseq manifest.csv

This will run STAR alignment and output files to path/to/align/output.

Quantification

The alignment BAM is generated at path/to/align/output/Aligned.sortedByCoord.out.bam, which we provde as input to dynast count. We also need to provide the gene annotation GTF that was used to generate the STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag RG path/to/align/output/Aligned.sortedByCoord.out.bam -o path/to/count/output --conversion TC

This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

scSLAM-seq

scSLAM-seq was developed by [Erhard2019] and is the single-cell adaptation of thiol(SH)-linked alkylation for metabolic sequencing of RNA (SLAM-seq) [Herzog2017]. Similar to NASC-seq, scSLAM-seq is based on the Smart-seq protocol [Picelli2013]. Smart-seq experiments generate single or pairs of FASTQs for each cell sequenced, which dynast processes simultaneously.

	Sequencing technology: Smart-Seq2

	Induced conversion: T>C

Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). Since we have multiple sets of FASTQs, we need to prepare a FASTQ manifest CSV, instead of providing these as an argument to dynast align. The manifest CSV contains three columns where the first column is a unique cell name/ID, the second column is the path to the first FASTQ, and the third is the path to the second FASTQ. For single-end reads, the third column can be a single - character. Here is an example with two cells:

cell_1,path/to/R1.fastq.gz,path/to/R2.fastq.gz
cell_2,path/to/R1.fastq.gz,-

Then, we use this manifest as the input to dynast align.

dynast align -i path/to/STAR/index -o path/to/align/output -x smartseq --strand unstranded manifest.csv

Note that we provide --strand unstranded because the Smart-seq protocol used with scSLAM-seq produces unstranded reads. This will run STAR alignment and output files to path/to/align/output.

Quantification

The alignment BAM is generated at path/to/align/output/Aligned.sortedByCoord.out.bam, which we provde as input to dynast count. We also need to provide the gene annotation GTF that was used to generate the STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag RG path/to/align/output/Aligned.sortedByCoord.out.bam -o path/to/count/output --conversion TC --strand unstranded

Note that we provide --strand unstranded again because the Smart-seq protocol used with scSLAM-seq produces unstranded reads. This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

scNT-seq

The single-cell metabolically labeled new RNA tagging sequencing (scNT-seq) was developed by [Qiu2020]. It uses Drop-seq, which is a droplet-based scRNA-seq method [Macosko2015].

	Sequencing technology: Drop-seq

	Induced conversion: T>C

Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). A single sample will consist of a pair of FASTQs, one containing the cell barcode and UMI sequences and the other containing the biological cDNA sequences. Let’s say these two FASTQs are barcode_umi.fastq.gz and cdna.fastq.gz.

dynast align -i path/to/STAR/index -o path/to/align/output -x dropseq cdna.fastq.gz barcode_umi.fastq.gz

This will run STAR alignment and output files to path/to/align/output.

Consensus

Optionally, we can call consensus sequences for each UMI using dynast consensus. This command requires the alignment BAM and the gene annotation GTF that was used to generate the STAR index.

dynast consensus -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/align/output/Aligned.sortedByCoord.out.bam -o path/to/consensus/output

This will create a new BAM file named path/to/consensus/output/consensus.bam, which you can then use in the next step in place of the original alignment BAM.

Quantification

Finally, to quantify the number of labeled/unlabeled RNA, we run dynast count with the appropriate alignment BAM and the gene annotation GTF that was used to generate the STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/alignment.bam -o path/to/count/output --conversion TC

where path/to/alignment.bam should be path/to/align/output/Aligned.sortedByCoord.out.bam if you did not run dynast consensus, or path/to/consensus/output/consensus.bam if you did.

This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

sci-fate

The single-cell combinatorial indexing and messenger RNA labeling (sci-fate) was developed by [Cao2020].

	Sequencing technology: sci-fate

	Induced conversion: T>C

Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). A single sample will consist of a pair of FASTQs, one containing the cell barcode and UMI sequences and the other containing the biological cDNA sequences. Let’s say these two FASTQs are barcode_umi.fastq.gz and cdna.fastq.gz.

dynast align -i path/to/STAR/index -o path/to/align/output -x scifate cdna.fastq.gz barcode_umi.fastq.gz

This will run STAR alignment and output files to path/to/align/output.

Consensus

Optionally, we can call consensus sequences for each UMI using dynast consensus. This command requires the alignment BAM and the gene annotation GTF that was used to generate the STAR index.

dynast consensus -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/align/output/Aligned.sortedByCoord.out.bam -o path/to/consensus/output

This will create a new BAM file named path/to/consensus/output/consensus.bam, which you can then use in the next step in place of the original alignment BAM.

Quantification

Finally, to quantify the number of labeled/unlabeled RNA, we run dynast count with the appropriate alignment BAM and the gene annotation GTF that was used to generate the STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/alignment.bam -o path/to/count/output --conversion TC

where path/to/alignment.bam should be path/to/align/output/Aligned.sortedByCoord.out.bam if you did not run dynast consensus, or path/to/consensus/output/consensus.bam if you did.

This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dynast	

 	
 	
 dynast.align	

 	
 	
 dynast.benchmarking	

 	
 	
 dynast.benchmarking.simulation	

 	
 	
 dynast.config	

 	
 	
 dynast.consensus	

 	
 	
 dynast.constants	

 	
 	
 dynast.count	

 	
 	
 dynast.estimate	

 	
 	
 dynast.estimation	

 	
 	
 dynast.estimation.p_c	

 	
 	
 dynast.estimation.p_e	

 	
 	
 dynast.estimation.pi	

 	
 	
 dynast.logging	

 	
 	
 dynast.main	

 	
 	
 dynast.preprocessing	

 	
 	
 dynast.preprocessing.aggregation	

 	
 	
 dynast.preprocessing.bam	

 	
 	
 dynast.preprocessing.consensus	

 	
 	
 dynast.preprocessing.conversion	

 	
 	
 dynast.preprocessing.coverage	

 	
 	
 dynast.preprocessing.snp	

 	
 	
 dynast.ref	

 	
 	
 dynast.stats	

 	
 	
 dynast.technology	

 	
 	
 dynast.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__enter__() (dynast.utils.suppress_stdout_stderr method)

 	__exit__() (dynast.utils.suppress_stdout_stderr method)

 	__model (in module dynast.benchmarking.simulation)

 	
 	__version__ (in module dynast)

 	_model (in module dynast.estimation.pi)

 	_pi_model (in module dynast.benchmarking.simulation)

 	_simulate() (in module dynast.benchmarking.simulation)

A

 	
 	ADATA_FILENAME (in module dynast.constants)

 	aggregate_counts() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.aggregation)

 	AGGREGATE_FILENAME (in module dynast.constants)

 	align() (in module dynast.align)

 	
 	ALIGNMENT_COLUMNS (in module dynast.preprocessing.bam)

 	ALIGNMENTS_FILENAME (in module dynast.constants)

 	ALIGNMENTS_PARSER (in module dynast.preprocessing.conversion)

 	all_exists (in module dynast.utils)

 	arguments_to_list() (in module dynast.utils)

 	as_completed_with_progress() (in module dynast.utils)

B

 	
 	BAM_BARCODE_TAG (in module dynast.config)

 	BAM_CONSENSUS_READ_COUNT_TAG (in module dynast.config)

 	BAM_GENE_TAG (in module dynast.config)

 	BAM_PEEK_READS (in module dynast.config)

 	BAM_READGROUP_TAG (in module dynast.config)

 	BAM_REQUIRED_TAGS (in module dynast.config)

 	BAM_UMI_TAG (in module dynast.config)

 	BARCODE_UMI_TECHNOLOGIES (in module dynast.technology)

 	
 	BASE_COLUMNS (in module dynast.preprocessing.conversion)

 	BASE_IDX (in module dynast.preprocessing.consensus)

 	(in module dynast.preprocessing.conversion)

 	BASES (in module dynast.preprocessing.consensus)

 	beta_mean() (in module dynast.estimation.pi)

 	beta_mode() (in module dynast.estimation.pi)

 	binomial_pmf() (in module dynast.estimation.p_c)

 	BINS_DIR (in module dynast.config)

C

 	
 	calculate_coverage() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.coverage)

 	calculate_coverage_contig() (in module dynast.preprocessing.coverage)

 	calculate_mutation_rates() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.aggregation)

 	call_consensus() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.consensus)

 	call_consensus_from_reads() (in module dynast.preprocessing.consensus)

 	call_consensus_from_reads_process() (in module dynast.preprocessing.consensus)

 	check_bam_contains_duplicate() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	check_bam_contains_secondary() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	check_bam_contains_unmapped() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	check_bam_is_paired() (in module dynast.preprocessing.bam)

 	check_bam_tags_exist() (in module dynast.preprocessing.bam)

 	COLUMNS (in module dynast.preprocessing.conversion)

 	combine_arguments() (in module dynast.utils)

 	COMMAND_TO_FUNCTION (in module dynast.main)

 	complement_counts() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.conversion)

 	consensus() (in module dynast.consensus)

 	
 	CONSENSUS_BAM_FILENAME (in module dynast.constants)

 	consensus_worker() (in module dynast.preprocessing.consensus)

 	CONVERSION_COLUMNS (in module dynast.preprocessing.conversion)

 	CONVERSION_COMPLEMENT (in module dynast.preprocessing)

 	(in module dynast.preprocessing.conversion)

 	CONVERSION_CSV_COLUMNS (in module dynast.preprocessing.bam)

 	CONVERSION_IDX (in module dynast.preprocessing.conversion)

 	CONVERSIONS_FILENAME (in module dynast.constants)

 	CONVERSIONS_INDEX_FILENAME (in module dynast.constants)

 	CONVERSIONS_PARSER (in module dynast.preprocessing.conversion)

 	CONVS_FILENAME (in module dynast.constants)

 	count() (in module dynast.count)

 	count_conversions() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.conversion)

 	count_conversions_part() (in module dynast.preprocessing.conversion)

 	COUNT_DIR (in module dynast.constants)

 	count_no_conversions() (in module dynast.preprocessing.conversion)

 	COUNTS_PREFIX (in module dynast.constants)

 	COUNTS_SPLIT_THRESHOLD (in module dynast.config)

 	counts_to_matrix() (in module dynast.utils)

 	COVERAGE_FILENAME (in module dynast.constants)

 	COVERAGE_INDEX_FILENAME (in module dynast.constants)

 	COVERAGE_PARSER (in module dynast.preprocessing.coverage)

 	CSV_COLUMNS (in module dynast.preprocessing.conversion)

D

 	
 	decompress_gzip (in module dynast.utils)

 	deduplicate_counts() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.conversion)

 	deduplicate_counts_part() (in module dynast.preprocessing.conversion)

 	detect_snps() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.snp)

 	display_progress_with_counter() (in module dynast.utils)

 	downsample_counts() (in module dynast.utils)

 	drop_multimappers() (in module dynast.preprocessing.conversion)

 	drop_multimappers_part() (in module dynast.preprocessing.conversion)

 	
 dynast

 	module

 	
 dynast.align

 	module

 	
 dynast.benchmarking

 	module

 	
 dynast.benchmarking.simulation

 	module

 	
 dynast.config

 	module

 	
 dynast.consensus

 	module

 	
 dynast.constants

 	module

 	
 dynast.count

 	module

 	
 dynast.estimate

 	module

 	
 dynast.estimation

 	module

 	
 dynast.estimation.p_c

 	module

 	
 	
 dynast.estimation.p_e

 	module

 	
 dynast.estimation.pi

 	module

 	
 dynast.logging

 	module

 	
 dynast.main

 	module

 	
 dynast.preprocessing

 	module

 	
 dynast.preprocessing.aggregation

 	module

 	
 dynast.preprocessing.bam

 	module

 	
 dynast.preprocessing.consensus

 	module

 	
 dynast.preprocessing.conversion

 	module

 	
 dynast.preprocessing.coverage

 	module

 	
 dynast.preprocessing.snp

 	module

 	
 dynast.ref

 	module

 	
 dynast.stats

 	module

 	
 dynast.technology

 	module

 	
 dynast.utils

 	module

E

 	
 	end() (dynast.stats.Stats method)

 	(dynast.stats.Step method)

 	estimate() (in module dynast.benchmarking.simulation)

 	(in module dynast.estimate)

 	ESTIMATE_DIR (in module dynast.constants)

 	estimate_p_c() (in module dynast.estimation)

 	(in module dynast.estimation.p_c)

 	estimate_p_e() (in module dynast.estimation)

 	(in module dynast.estimation.p_e)

 	
 	estimate_p_e_control() (in module dynast.estimation)

 	(in module dynast.estimation.p_e)

 	estimate_p_e_nasc() (in module dynast.estimation)

 	(in module dynast.estimation.p_e)

 	estimate_pi() (in module dynast.estimation)

 	(in module dynast.estimation.pi)

 	expectation_maximization() (in module dynast.estimation.p_c)

 	expectation_maximization_nasc() (in module dynast.estimation.p_c)

 	extract_conversions() (in module dynast.preprocessing.snp)

 	extract_conversions_part() (in module dynast.preprocessing.snp)

F

 	
 	fit_stan_mcmc() (in module dynast.estimation.pi)

 	flatten_dict_values (in module dynast.utils)

 	
 	flatten_dictionary (in module dynast.utils)

 	flatten_iter (in module dynast.utils)

G

 	
 	generate_sequence() (in module dynast.benchmarking.simulation)

 	GENES_FILENAME (in module dynast.constants)

 	get_available_memory() (in module dynast.utils)

 	get_file_descriptor_limit() (in module dynast.utils)

 	get_max_file_descriptor_limit() (in module dynast.utils)

 	
 	get_STAR_binary_path() (in module dynast.utils)

 	get_STAR_version() (in module dynast.utils)

 	get_tags_from_bam() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	guess_beta_parameters() (in module dynast.estimation.pi)

I

 	
 	increase_file_descriptor_limit() (in module dynast.utils)

 	
 	initializer() (in module dynast.benchmarking.simulation)

 	(in module dynast.estimation.pi)

L

 	
 	logger (in module dynast.logging)

M

 	
 	main() (in module dynast.main)

 	make_pool_with_counter() (in module dynast.utils)

 	merge_aggregates() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.aggregation)

 	merge_dictionaries (in module dynast.utils)

 	mkstemp (in module dynast.utils)

 	MODEL_NAME (in module dynast.config)

 	MODEL_PATH (in module dynast.config)

 	MODELS_DIR (in module dynast.config)

 	
 module

 	dynast

 	dynast.align

 	dynast.benchmarking

 	dynast.benchmarking.simulation

 	dynast.config

 	dynast.consensus

 	dynast.constants

 	dynast.count

 	dynast.estimate

 	dynast.estimation

 	dynast.estimation.p_c

 	dynast.estimation.p_e

 	dynast.estimation.pi

 	dynast.logging

 	dynast.main

 	dynast.preprocessing

 	dynast.preprocessing.aggregation

 	dynast.preprocessing.bam

 	dynast.preprocessing.consensus

 	dynast.preprocessing.conversion

 	dynast.preprocessing.coverage

 	dynast.preprocessing.snp

 	dynast.ref

 	dynast.stats

 	dynast.technology

 	dynast.utils

N

 	
 	NASC_ARGUMENTS (in module dynast.config)

O

 	
 	open_as_text (in module dynast.utils)

P

 	
 	P_C_PREFIX (in module dynast.constants)

 	P_E_FILENAME (in module dynast.constants)

 	PACKAGE_PATH (in module dynast.config)

 	parse_align() (in module dynast.main)

 	parse_all_reads() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	parse_consensus() (in module dynast.main)

 	parse_count() (in module dynast.main)

 	
 	PARSE_DIR (in module dynast.constants)

 	parse_estimate() (in module dynast.main)

 	parse_read_contig() (in module dynast.preprocessing.bam)

 	parse_ref() (in module dynast.main)

 	patch_mp_connection_bpo_17560() (in module dynast.utils)

 	PLATE_TECHNOLOGIES (in module dynast.technology)

 	PLATFORM (in module dynast.config)

 	plot_estimations() (in module dynast.benchmarking.simulation)

 	print_technologies() (in module dynast.main)

R

 	
 	RATES_FILENAME (in module dynast.constants)

 	read_aggregates() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.aggregation)

 	read_alignments() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	read_conversions() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	read_counts() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.conversion)

 	read_coverage() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.coverage)

 	read_p_c() (in module dynast.estimation)

 	(in module dynast.estimation.p_c)

 	read_p_e() (in module dynast.estimation)

 	(in module dynast.estimation.p_e)

 	
 	read_pi() (in module dynast.estimation)

 	(in module dynast.estimation.pi)

 	read_pickle (in module dynast.utils)

 	read_rates() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.aggregation)

 	read_snp_csv() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.snp)

 	read_snps() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.snp)

 	RECOMMENDED_MEMORY (in module dynast.config)

 	ref() (in module dynast.ref)

 	results_to_adata() (in module dynast.utils)

 	run_executable (in module dynast.utils)

S

 	
 	save() (dynast.stats.Stats method)

 	select_alignments() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	setup_align_args() (in module dynast.main)

 	setup_consensus_args() (in module dynast.main)

 	setup_count_args() (in module dynast.main)

 	setup_estimate_args() (in module dynast.main)

 	setup_ref_args() (in module dynast.main)

 	simulate() (in module dynast.benchmarking.simulation)

 	simulate_batch() (in module dynast.benchmarking.simulation)

 	simulate_reads() (in module dynast.benchmarking.simulation)

 	SNP_COLUMNS (in module dynast.preprocessing.snp)

 	SNPS_FILENAME (in module dynast.constants)

 	sort_and_index_bam() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.bam)

 	split_bam() (in module dynast.preprocessing.bam)

 	split_counts() (in module dynast.utils)

 	split_counts_by_velocity() (in module dynast.preprocessing)

 	(in module dynast.preprocessing.conversion)

 	split_index() (in module dynast.utils)

 	split_matrix() (in module dynast.utils)

 	
 	STAR_ARGUMENTS (in module dynast.config)

 	STAR_BAI_FILENAME (in module dynast.constants)

 	STAR_BAM_FILENAME (in module dynast.constants)

 	STAR_BARCODES_FILENAME (in module dynast.constants)

 	STAR_FEATURES_FILENAME (in module dynast.constants)

 	STAR_FILTERED_DIR (in module dynast.constants)

 	STAR_GENE_DIR (in module dynast.constants)

 	STAR_genomeGenerate() (in module dynast.ref)

 	STAR_MATRIX_FILENAME (in module dynast.constants)

 	STAR_RAW_DIR (in module dynast.constants)

 	STAR_solo() (in module dynast.align)

 	STAR_SOLO_ARGUMENTS (in module dynast.config)

 	STAR_SOLO_DIR (in module dynast.constants)

 	STAR_VELOCYTO_DIR (in module dynast.constants)

 	start() (dynast.stats.Stats method)

 	(dynast.stats.Step method)

 	Stats (class in dynast.stats)

 	STATS_PREFIX (in module dynast.constants)

 	Step (class in dynast.stats)

 	step() (dynast.stats.Stats method)

 	suppress_stdout_stderr (class in dynast.utils)

T

 	
 	TECHNOLOGIES (in module dynast.technology)

 	TECHNOLOGIES_MAP (in module dynast.technology)

 	
 	Technology (in module dynast.technology)

 	to_dict() (dynast.stats.Stats method)

 	(dynast.stats.Step method)

U

 	
 	UnsupportedOSException

V

 	
 	VELOCITY_BLACKLIST (in module dynast.config)

W

 	
 	write_pickle (in module dynast.utils)

 _images/scnt_umi.png
9 reads sharing the same UMI index
for a representative transcript

0wo-@m0 D
& I De

@® oo -osod0K
& == =TS

s®MNee-ee-o
00--@0----0-aD
& =IOt
© qEm(- o @00

81,510,000 81,510,150

_static/file.png

_static/minus.png

_static/plus.png

_static/punnet_square.png
Metabolic

Dynast | "

not-labeled

labeled

Unspliced
Labeled

— unspliced Unsplicea
Not-labeled
RNA
splicing

Spliced
Not-labeled

| » spliced

Spliced
Labeled

nav.xhtml

 Table of Contents

 		
 Dynast: Complete splicing and labeling quantification from metabolic labeling scRNA-seq

 		
 Getting started

 		
 Installation

 		
 Command-line structure

 		
 Basic usage

 		
 Build the STAR index

 		
 Align FASTQs

 		
 [Optional] Consensus

 		
 Quantify

 		
 [Optional] Estimate

 		
 Pipeline Usage

 		
 Building the STAR index with ref

 		
 Aligning FASTQs with align

 		
 UMI-based technologies

 		
 Plate-based technologies

 		
 Calling consensus sequences with consensus

 		
 Quantifying counts with count

 		
 Basic arguments

 		
 Detecting and filtering SNPs

 		
 Read deduplication modes

 		
 Estimating counts with estimate

 		
 Estimation thresholds

 		
 Estimation on a subset of RNA species

 		
 Grouping cells

 		
 Downsampling

 		
 Control samples

 		
 Technical Information

 		
 Consensus procedure

 		
 Count procedure

 		
 parse

 		
 snp

 		
 quant

 		
 Output Anndata

 		
 Estimate procedure

 		
 aggregate

 		
 estimate

 		
 Output Anndata

 		
 Caveats

 		
 Read groups

 		
 Statistical estimation

 		
 Overview

 		
 Background estimation (p_e)

 		
 Induced rate estimation (p_c)

 		
 Bayesian inference (\pi_g)

 		
 API

 		
 Subpackages

 		
 dynast.benchmarking

 		
 dynast.estimation

 		
 dynast.preprocessing

 		
 Submodules

 		
 dynast.align

 		
 dynast.config

 		
 dynast.consensus

 		
 dynast.constants

 		
 dynast.count

 		
 dynast.estimate

 		
 dynast.logging

 		
 dynast.main

 		
 dynast.ref

 		
 dynast.stats

 		
 dynast.technology

 		
 dynast.utils

 		
 Package Contents

 		
 __version__

 		
 References

 		
 NASC-seq

 		
 Alignment

 		
 Quantification

 		
 scSLAM-seq

 		
 Alignment

 		
 Quantification

 		
 scNT-seq

 		
 Alignment

 		
 Consensus

 		
 Quantification

 		
 sci-fate

 		
 Alignment

 		
 Consensus

 		
 Quantification

_static/scnt_umi.png
9 reads sharing the same UMI index
for a representative transcript

0wo-@m0 D
& I De

@® oo -osod0K
& == =TS

s®MNee-ee-o
00--@0----0-aD
& =IOt
© qEm(- o @00

81,510,000 81,510,150

_static/steps.png
dynast count

Parse every alignment and extract
base conversions and nucleotide content

Assign RNA velocity type (spliced,
unspliced, ambiguous) to each read

optional

Detect possible SNPs by calculating
genomic positions where
(# reads with conversion) / (# reads aligned)
is greater than a threshold

Count UMIs with/without specific

dynast estimate

nucleotide conversions for each read,
ignoring any provided or detected SNPs

4

UMI counts

not-labeled, labeled

unspliced, spliced, ambiguous

unspliced not-labeled (UN), unspliced labeled (UL),
spliced not-labeled (SN), spliced labeled (SL)

-~
|
|
|
|

Cell groups
(ex. clustering)

Construct a matrix A, is the number of reads
with k conversions and n original bases

i

Estimate the average conversion rate
in not-labeled RNA

Estimate the average conversion rate
in labeled RNA

Estimate the fraction of labeled RNA

|

*

UMI counts & estimated counts

not-labeled, labeled

H5AD unspliced, spliced, ambiguous
unspliced not-labeled (UN), unspliced labeled (UL),
spliced not-labeled (SN), spliced labeled (SL)

_static/workflow.png
dynast count
dynast estimate

metabolic labeling experiment: - quantify unspliced not-labeled (UN), unspliced labeled (UL),
scNT-seq, sci-fate, ... spliced not-labeled (SN), spliced labeled (SL) reads
- optionally perform statistical estimation

° ®

Raw FASTQs Align Quantify Dynamo
dynas-t align Vector ﬁe;d analysis

align reads to a reference using STAR Qaristoteleo/dynamo-release

